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ABSTRACT 

Light Detection and Ranging (LIDAR) systems are three dimensional (3D) 

imaging sensors applied for mapping terrain, measuring structural dimensions, and 

navigating robots.  Pulsed laser rangefinders provide precise range measurements that 

require an estimate of sensor pose for transformation into world coordinates.  Pose 

information is frequently provided with extrinsic sources such as Global Positioning 

System (GPS) or an Inertial Measurement Unit (IMU).  Unreliable signal availability for 

GPS in military environments and the high cost of IMUs limit the employment of these 

extrinsic sources.  Determining pose intrinsically by detecting landmarks in the 

environment within the sensor data is more ideal.  Fiducial markers with known 

geometric dimensions and orientation provide a means of estimating LIDAR pose and 

registering data.  Presented is a method for landmark detection and pose estimation 

within range data.  Cylinder, cone, and sphere geometries are assessed for use as fiducial 

markers.  The detection algorithm extracts geometric features from LIDAR point data 

and tests for fit to a fiducial marker model.  Geometric feature extraction compresses the 

data set and leads to a potential intrinsic registration method using environment 

landmarks.  The detection accuracy and pose estimation precision are examined with 

terrestrial LIDAR range data captured in various outdoor street environments. 
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I. INTRODUCTION  

Modeling of an environment in three dimensions is used for a wide range of 

domains, including the mapping of terrain and structures from the air for civil and 

military planning, autonomous robot mapping and navigation, medical imaging and 

teleoperated systems, and augmented reality systems.  The task specification for some of 

these applications requires a very detailed model to be developed in situ.  Light Detection 

and Ranging (LIDAR) systems are used to acquire three dimensional (3D) surface data 

for modeling the environment. The advantage of LIDAR is the fast acquisition of a large 

amount of 3D point data with potentially high resolution.  Current LIDAR systems 

typically rely on Global Positioning System (GPS) and/or Inertial Measurement Unit 

(IMU) data for external parameters to determine the pose of the sensor and to register 

scans.  However, the data from GPS and IMU systems are generally much less precise 

than the LIDAR range data. 

Ongoing research investigates methods to process the large amount of data 

produced by a LIDAR system in order to extract features usable to model the 

environment and detect objects for scene understanding.  This research investigates 

methods of recognizing a fiducial marker within a LIDAR point cloud through geometric 

feature extraction. Detection and tracking of fiducial markers allows the LIDAR pose to 

be estimated using its own data and without relying on GPS/IMU data.  A viable feature 

extraction method for fiducial detection in LIDAR range data provides a means for 

estimating the LIDAR pose to test ground vehicle navigation methods using simultaneous 

location and mapping (SLAM) techniques.  Fiducials detected in both LIDAR range data 

and video image data also serve as control points for registering these two types of data. 

A. ENVIRONMENT MODELING WITH RANGE INFORMATION 

LIDAR range data measures the location of surfaces in the environment.  The 

range data is normally formatted as range values or point locations in Cartesian or polar 

coordinates.  A point cloud is a common term for the visualization of data in this format.  

Point representations alone are not always usable models of the environment for 
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applications.  The following sections describe the types of environments that are modeled 

with range information and various types of representations that are used.   

Generating a 3D representation takes time and effort to collect all the needed 

measurements.  For many mapping and modeling applications, the data is collected and 

processed separately, or “offline.”  Dynamic changes to the environment are often not 

recorded and must be considered.  Further difficulty comes with collecting accurate data 

in a hazardous environment such as a radioactive site, a disaster area, or a combat zone 

(Adams, 1998). 

Several methods are available to model the real world with a computer.  The type 

and structure of the environment being modeled affects the computational complexity 

and usability of a particular method.  Environments with more man-made objects are 

sometimes easier to model with geometrically defined features.  For example, the inside 

of a building frequently contains wall, floor, and ceiling surfaces that are generally 

orthogonal or at fixed angles to each other.  The geometrically defined structural features 

in these environments provide a mathematical means of modeling the surfaces.  A street 

along an urban corridor contains several man-made structure and ground surfaces mixed 

with natural ground and vegetation surfaces.  This type of environment is characterized 

by a mix of man-made and natural surfaces.  The unstructured environments in remote 

and unpopulated areas contain a majority of natural terrain and vegetation surfaces that 

are irregular (Burgard, 2008).  An example point cloud image from a street environment 

is shown in Figure 1 with simple flat geometry of the road and very irregular geometry of 

the trees. 
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Figure 1.   Point cloud representation of a street environment.   

The color variation indicates individual laser scan line patterns of the VLS.  In this scene, 
there are on average 2200 individual range points per laser scan line with a total of 64 

lasers. 
 

B. LIDAR SYSTEMS 

A 3D imaging system consists of a sensor to measure the distance to surfaces of 

objects in the environment and produces 3D coordinates or range and bearing values.  

The raw data can be easily represented by point clouds, with each point representing a 

spatial position and additional information such as color or laser intensity.  Example 3D 

imaging systems include laser scanners, 3D optical scanners, 3D range cameras, 

LIDARs, and 3D flash LIDARs (ASTM Standard E2544-09b).  More capable LIDAR 

systems produce high data point densities with accurate range information at a high 

sampling rate.  Intensity values of the laser return are available from the receiver, but the 

resulting image may not be of high quality compared to common digital imaging systems. 

Current applications of LIDAR systems include aerial mapping of terrain, 

measurement of structures, documentation and reverse engineering of public 

infrastructure, and robotic and autonomous systems for navigation and obstacle 
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avoidance. An important topic of research for all of these applications involves the 

extraction of usable information from LIDAR point clouds (Wehr, 2005).   

LIDAR systems vary in the type of laser transmission, the method to displace the 

laser through a scan pattern, and the type of environment the system is employed.  Pulsed 

lasers measure the time of flight between transmitting the pulse and measuring the 

reflected return.  Continuous wave lasers use either amplitude modulation or frequency 

modulation to measure the distance.  A triangulation-based LIDAR uses a laser to project 

a laser spot on the object of interest and an offset camera that locates the laser spot and 

triangulates the range value.  The laser is displaced using a dynamic mirror mechanism, a 

mechanism to move the entire laser, or through the motion of the platform to which the 

LIDAR is mounted. 

During data acquisition, LIDAR systems are transported aboard air and land 

platforms.  Aerial LIDARs generally scan a single laser beam in a whiskbroom pattern 

with a single axis scanning mirror.  This results in a scan with a sweep width across the 

track of platform motion (Zhao, 2004).  Airborne LIDAR systems are capable of 

mapping land and coastal areas in much shorter time than land based surveys.  Federal 

agencies create airborne LIDAR surveys, such as the one shown in Figure 2, for mapping 

flood plains, earthquake zones, border zones, and forest canopies (Anderson, 2006).  

Terrestrial LIDARs use a fixed, sweep, or rotating scan pattern.  The range is calculated 

either by a triangulation or pulse time of flight method.  Example systems for terrestrial 

LIDARs include the SICK LMS-200, often researched for autonomous robot navigation, 

and the Velodyne HDL-64E S2 (VLS) employed in this research.  Both systems are 

pictured in Figure 3. 
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Figure 2.   Aerial LIDAR system (ALS). 
 
 

 
Figure 3.   Terrestrial LIDAR System (TLS). 

The SICK LMS-200 is depicted on the left and the Velodyne HDL-64E S2 is on the right. 
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C.  3D GEOMETRIC FEATURE EXTRACTION 

LIDAR systems generate large sets of precise data.  Without prior knowledge, the 

data contains only low-level information about the sampled environment:  Only the 3D 

point values including location and reflectivity are known, but nothing about the 

underlying surface to permit making statements about the point relationships, particularly 

connectivity.  Higher-level classification of the data is required to determine additional 

information such as surface definition, object detection, and terrain roughness.  

Extracting geometric features from the 3D data allows for a compressed representation 

that is more useful to other systems (Adams, 1998). Past work in fitting range data to 

geometric primitives shows that range data can be reduced by up to three orders of 

magnitude when represented as feature data (Faddema, 1997).    

Extraction of geometric features, such as lines or arcs, involves fitting measured 

data to a model.  How well a set of data fits the model justifies using the model as a 

representation of the data.  There are two basic types of feature extraction.  The first 

involves clustering the data in such a way that a good fit is determined, for example, with 

a Hough transform.  The second utilizes least squares methods that attempt to minimize 

the differences between the observed data points and points that are located on the 

hypothesized feature.  This is often used when fitting lines, circles, ellipses, and conic 

sections (Premebida, 2005).  

Another distinction for feature extraction is between local and global methods.  In 

general, local methods work bottom-up building the representation of the environment by 

starting with the raw data at a low level of contextual meaning.  Global methods work 

top-down, being applied to the entire data set, and include an a priori understanding of 

the environment to extract the relevant features of interest from the data. 

1. Segmentation 

Because LIDAR data is a discrete set of range measurements, assuming the data 

represents a continuous surface often generates flawed geometric representations.  

Segmentation is a process to separate data points into groups based on a measure of 

similarity.  The segmented data gives a more meaningful and easier to process 
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representation. For example, a segmentation method may determine continuous regions 

of distance or intensity and detect the edges (discontinuities) between those regions 

(Premebida, 2005).  Range data segmentation works better in geometrically structured 

environments, where there is a better fit to surface primitives, and not as well in 

unstructured environments due to the higher variance in surface structures (Besl, 1988, 

pp. 47 –61). 

An example for global data segmentation is the split and merge technique.  This 

method starts with the entire data set as an initial region of interest and continues to 

subdivide regions until each region satisfies some measure of similarity.  The resultant 

data structure takes the form of a quadtree for 2D images, with each division resulting in 

four children, or an octree structure representing regions of 3D volumetric data with 

divisions of eight children. 

D. FIDUCIAL MARKERS 

Fiducial markers, also called control points, are reference markers that are 

recoverable by two independent sources of measurement.  Fiducial markers can be used 

to register two sets of data and to determine the accuracy and precision of sensor output 

(ASTM Standard E2544-09b).  The center of a circle and the center of a sphere are two 

examples for which the marker coordinates can be recovered based on the information in 

two separate data sets that include the marker surface.  Examples of 2D fiducial markers 

include high contrast colored concentric circles, patterned matrix markers such as ARTag, 

and lines (Cawood, 2007).  Three dimensional objects used for range image registration 

and pose estimation include cylinders, spheres, and orthogonal planes (Gao, 2007; Haas, 

2005).   

E. APPLICATIONS OF LIDAR 3D POINT CLOUDS 

Robotics systems use LIDAR as a sensor for many applications ranging from 

object recognition on factory assembly lines, manipulation of pallets in warehouses, and 

as a mapping tool for navigation of autonomous robots.  Simultaneous Localization and 

Mapping (SLAM) is an important robot navigation method that refers to the ability to 

determine an accurate localized position of the robot and an accurate map of the 
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environment.  Figure 4 shows an example of a robot generated navigational map.  LIDAR 

systems are well suited for SLAM due to their accuracy.  Several successful SLAM 

systems rely on artificial landmarks placed in the environment such as bar code 

reflectors, ultrasonic beacons, and visual patterns.  This limits their usability in unknown 

environments.  Other systems rely on external inputs from GPS and IMU sensors to 

estimate the robot’s position and orientation.   

 

Figure 4.   Robotic mapping using LIDAR 
The 2D LIDAR on this autonomous robot was used to generate the map below for 

navigation in an indoor environment. (From Bullock, 2008). 
 

Measuring and mapping infrastructure projects is another application for LIDAR 

systems.  Both airborne and ground LIDAR systems have been employed to map city 

structures, survey coastal areas, and to assess highways (StreetMapper, 2010).  Yoon 

(2009) describes a tunnel scanning LIDAR and associated feature extraction algorithms 

for an automated tunnel inspection process. 
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Future ground vehicle Augmented Reality (AR) systems offer the potential for 

increased situational awareness, access to geo-referenced mission information, and the 

ability for virtual area familiarization for relieving units.  Augmented reality systems 

assist the user with a visual integration of information overlaid on the visual perception of 

the real environment (Lindberg, 2009).   Registration is the alignment of the virtual 

augmentations (the virtual camera pose and internal parameters) with the user’s real-

world viewing parameters.  AR systems have strict requirements to register the computer 

generated graphics with the true environment in position, orientation and camera lens 

characteristics (field of view, distortion, etc.).  Registration errors result from poor 

tracking of the sensor and user viewpoints, an inaccurate calibration of the viewing 

device, or an inaccurate 3D environment model.  Registration errors decrease the 

rendering quality and often the effectiveness of the AR information.   

One drawback of many current real-time LIDAR mapping systems for military 

applications is the reliance on GPS/IMU as an external measurement basis for 

registration, localization, and navigation tasks.  A viable natural landmark tracking 

method using LIDAR range data offers a potential means for registration of panoramic 

mapping of urban terrains, a source of pose information for autonomous and teleoperated 

robot navigation without GPS/IMU inputs, and the ability for registration of virtual 

content overlays with the view of the real world environment.  Fiducial markers offer a 

way to determine the accuracy of ground truth feature extraction in LIDAR data for 

comparing methods that track natural landmarks.  Landmark tracking methods with good 

performance can then register panoramic images with range data. 

The thesis research presented herein investigates geometric fiducial marker 

shapes that can be recognized within LIDAR range data.   A method of processing the 

LIDAR range data is implemented to extract these shapes and to determine their pose  

relative to the sensor.  Experimental results are presented that investigate the 

effectiveness of the method to detect and estimate the pose of the fiducial markers at 

various ranges in an outdoor environment.  
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F. THESIS STRUCTURE 

This first chapter introduces the pertinent topics of interest.  Chapter II discusses 

the relevant background information and related work such as 3D fitting algorithms and 

geometric feature extraction from 3D point data.  The research methodology is covered in 

Chapter III.  Chapter IV explains the experimentation conducted to compare fiducial 

marker geometries and the overall accuracy and precision of the detection technique.  The 

experimental results are presented in Chapter V, while Chapter VI offers a discussion of 

those results and future work.  Finally, the conclusions of the research are presented in 

Chapter VII. 
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II. BACKGROUND 

A. ENVIRONMENT MODELING 

The method for modeling the real-world environment depends on the type of 

environment being modeled and the type of sensor data obtained from measuring that 

environment.  Natural environments and man-made environments differ in the amount of 

geometric structure available for producing an accurate representation. 

1.  Structured Environments 

Man-made objects and structures tend to have geometric features that can be 

described with fewer parameters, enabling geometric modeling methods to be more 

effective.  In this thesis, an environment is called structured if it contains a majority of 

surfaces that can be represented by geometric features.  Geometric features found in 

structured environments include the straight edges and lines of buildings, planar wall and 

object surfaces, and cylindrically shaped sign posts and electrical poles. Indoor artificial 

environments offer the ability to control lighting, the location of objects, and the amount 

and scale of dynamic changes to the environment.  These controlled factors offer the 

ability to establish ground truth to develop and troubleshoot feature extraction methods.  

The interior of buildings, factory floors, medical operating rooms, and urban complexes 

are all examples of structured environments.  

2. Unstructured Environments 

In the case of an environment without geometric structures, other models and 

classification methods must be used.  Natural terrain and objects such as rocks, trees, and 

bodies of water are characterized by uneven and porous surfaces that are not easily 

modeled with smooth geometric surfaces.  For this thesis, these environments are called 

unstructured.  The background composition and the locations of objects in naturally 

unstructured environments are not easily controlled making detecting and tracking 

objects in the environment more difficult (Burgard, 2008).   
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3. Mixed Structure Environments 

A mixed structure environment is defined for this thesis as the combination of 

artificial man-made objects and naturally occurring objects.  An example would be a 

moderate density populated area where there are man-made structures situated among 

natural terrain and vegetation.  This research focuses on the mixed structure environment 

with the proposed fiducial marker geometries placed in outdoor environments that 

contain natural terrain and vegetation with artificial objects and structures. 

4.  Modeling Methods 

A point cloud is a set of 3D points where each point represents the position of a 

surface.  Surfaces are also modeled using a polygonal or a 3D geometric model.  

Polygonal meshes are collections of point vertices connected by edges to form a 

polygonal surface representation.  Point clouds and polygonal meshes more often 

represent unstructured environments while geometric shapes such cubes, cylinders, and 

spheres are more frequently applied to structured and man-made environments.  The 

modeling method affects the resolution, speed, and data size of the model.   

B. LIDAR SYSTEMS 

LIDAR systems use lasers to obtain range information.  The lasers are either 

moved through a scan pattern by a mechanical means or reflected off of a moving mirror 

to scan a field of view (FOV).  The relative range data from the sensor explicitly 

represents surfaces in the environment.  Operation of LIDAR systems vary in the method 

of range data acquisition and the platform from which the system is operated. 

1.   Laser Range Data Characteristics 

Range data from a LIDAR sensor gives an explicit representation of the surfaces 

in the environment within the system’s field of view.  LIDAR systems measure the line 

of sight distance to surfaces using reflected laser energy and give only partial information 

about the nearest side of an object.  The range and surface reflectance of objects 

determine the strength of the return signal detected.  The 3D position is calculated using 

one dimensional range data and a two dimensional scan pattern.  The range data set tends 
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to be very large with false and missing returns causing incomplete data.  There are a wide 

variety of LIDAR range systems with different range acquisition patterns.  In general, it 

is more difficult to quickly generate LIDAR sampling patterns at rates and spatial 

densities comparable to those of devices producing 2D raster images.  LIDAR actively 

emits the laser energy needed to measure the environment and interference effects must 

be accounted for resulting in a sparse or time lapsed image.  Passive imaging systems 

only need to sense the energy in the environment providing a more simultaneous and 

dense image.  The often relatively sparse nature of the LIDAR scan pattern increases the 

difficulty to segment and process 3D range data for features of interest compared to 2D 

raster images.  The sparse sampling often does not provide data exactly on an edge that 

can be used to detect the edge.  Despite a relatively sparse coverage of the field of view, 

the 3D range data enables segmentation methods not easily performed with passive 2D 

imagery. 

a. Type of Operation 

The method of laser operation for range data acquisition determines the 

parameters needed for data processing such as the resolution and sampling rate.  The 

displacement of the laser through the field of view is accomplished in several ways.  A 

single laser fired through a rotating mirror is provides a planar scan.  Articulating the 

mirror along two axes produces a 2D scan pattern.  Other system configurations mount 

multiple lasers inside a rotating unit.  A whiskbroom scanner displaces the laser in an 

across-track scan pattern with a mirror in the direction perpendicular to the path of the 

sensor platform or vehicle.  A push broom scanner, also called an along track scanner, 

uses a line of sensors oriented perpendicular to the track of the sensor platform. 

b. Types of Lasers 

There are a few methods with which the laser energy is measured to 

produce range estimates.  A Time of Flight (TOF) pulsed LIDAR measures the elapsed 

time of flight between the transmission and detection of the reflection of a laser pulse.  

The speed of light and the measured TOF of the laser pulse permit range estimation.  

Pulsed LIDAR systems require high speed and precise components to transmit and 
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measure the pulse.  These components increase their cost (Adams, 1998, p. 27).  Another 

type of LIDAR uses a frequency modulated continuous wave (FMCW) laser to calculate 

the difference between the frequency of the transmitted and received signals.  This 

difference is directly proportional to range (Adams, 1998, pp. 42–43).   Amplitude 

modulated continuous wave (AMCW) LIDAR measures the phase shift between the 

transmitted and reflected beams.  This type of system is beneficial for close range 

applications (Adams, 1998, p. 27).  

Flash LIDARs, or optical range cameras, are 3D imaging systems that 

detect a wide light flash with a focal plane array (FPA) detector to measure range.  Both 

lasers and banks of Light Emitting Diodes (LED) can act as light sources.  The FPA 

detects a flash illumination nearly simultaneously for all pixels in the frame.  This type of 

system allows for high frame rate range data acquisition on the order of 30 frames per 

second, without any motion between the capture times for individual image points as is 

the case for scanning LIDARs (ASTM Standard E2544-09b).  

c. Sources of Error 

Range errors are determined by the laser pulse width, the performance of 

the laser detector, and the precision of the timing system that measures the time of flight 

for a reflected laser firing.  Backscatter is the reflection of laser energy from gases and 

particles in the atmosphere that are not the intended surface target for ranging.  If the 

backscatter energy is high enough, a false range measurement occurs.  This, in turn, 

causes navigation errors in the estimate of the position and orientation of the sensor.  

These errors accumulate over time and affect the accuracy of the placement of the range 

readings taken within a sensor frame of reference into environment coordinates.  For 

LIDAR systems dependent on pose estimation from other sensors such as an integrated 

GPS/IMU input, the pose estimation error affects all range point measurements.  Further 

errors are introduced with the extrinsic calibration of the LIDAR.  In the case of the VLS 

used for this research, calibration data is provided by the manufacturer.  No further 

calibration attempts of the VLS were made.  Finally, for the rotating mechanism of the 

VLS, a degree of error is introduced by the angular measurement of the rotation position 
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at the time of laser firing.  Theoretically, the potential exists for interference between 

multiple lasers with the same wavelength and pulse length when fired at the same time.  

Misinterpretation of the laser reflections results in erroneous time of flight and range 

measurements.  This crosstalk between laser pulses is prevented in the VLS by both the 

sequential firing of individual lasers and by rotating the laser mount between firing lasers 

that are closely spaced. 

Laser beam propagation is generally approximated with a Gaussian beam 

intensity profile, shown in Figure 5.  This model describes the characteristics of the beam 

divergence, which increases with range, and the beam intensity, which decreases from the 

center of the cross section of the beam width.  For applications that use a laser beam for 

range finding, the accuracy of the point of range measurement decreases as the laser 

beam width spreads (Alda, 2003).  Further error can be introduced with effects such as 

overspill and underspill, where the laser beam is reflecting off of multiple surfaces 

simultaneously, yet only a single range reading is measured. 

 

Figure 5.   Gaussian laser pulse error model. 
The intensity distribution of laser energy intensity is shown as a normally distributed 

value.  (From Domenic, 2007) 
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d. Field of View (FOV) and Resolution 

The Field of View (FOV) gives the angular coverage of the environment 

from the LIDAR origin measured in units of degrees in the horizontal and vertical 

directions.  Resolution is the ability of a sensor to distinguish between two separate 

objects in a single scan.  This separation is measured for the range, horizontal and vertical 

dimensions at a specified distance from the sensor.  Angular resolution is used to remove 

the distance factor from the measurement (ASTM Standard E2544-09b). 

The angular resolution is calculated as 

.
 arctan

resolution dist
angular resolution

range

 
  

 
 

For a time-of-flight laser rangefinder, the pulse length determines the range resolution 

and accuracy.  For the Velodyne HDL-64E S2 LIDAR, the range resolution is 1.5 cm (1-

sigma) using a 905 nanometer wavelength laser with a 5 nanosecond pulse.   The range 

resolution gives the distance along the range axis required to resolve two targets and is 

calculated below, where R is the range resolution, c is the speed of light, pT is the pulse 

length, r is the range accuracy, and SNR  is the signal to noise ratio of the sensor (Wehr, 

2005).   
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2. LIDAR Data Processing 

Compared to a raster image from a digital camera, it is generally more difficult to 

segment and process range data for features.  A higher density of range points offers 

more data for feature detection, but generates a larger amount of data that must be 

communicated, processed, and stored.   
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a.  Frame Definition 

A frame is defined for this thesis as a region of interest for data 

acquisition.  The size of the frame is specified as a range of the sensor rotation, up to the 

size of the sensor FOV limit of 360 degrees.  In this thesis, a frame is normally all the 

data acquired within a full revolution of the sensor.  The frame rate is the number of 

frames that are acquired per second, measured in frames per second (FPS) or cycles per 

second (Hz) (ASTM Standard E2544-09b). 

b. Online Processing 

Online methods aim to process data as it arrives, without intermediate bulk 

storage, in an effort to achieve real-time performance.  The size and format of the data are 

critical to efficient online processing.  Acquiring data takes time and delays results while 

waiting for the acquisition for the full frame size of data.  Smaller sets of data can be 

processed as quickly as they are made available by the sensing system.  Important to 

successful online processing is the need for the data to be presented in an order that 

allows efficient computation (Isenburg, 2008).  Methods that process LIDAR data frames 

consisting of neighboring individual range values, 3D points, or network packets of point 

data offers the advantage of faster performance.  The disadvantage is that at any one time, 

less complete data is available to extract useful information. 

c. Post-Processing 

Post-processing involves data manipulation at a time after sensor data 

acquisition.  Data format and size are less critical than with online processing methods, 

since these steps can be modified as needed for the application in question.  While post-

processing methods may be more complete and accurate, the time difference between 

acquisition and obtaining results may preclude the use of these methods.  As 

computational memory and algorithms improve, methods previously used for post-

processing may become feasible for online processing. 
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C. GEOMETRIC FEATURE EXTRACTION FROM POINT DATA 

Point data alone is of limited use.  Higher-level abstractions of the environment 

features that are described by the data are more useful.  Point data measurements are 

processed to determine, or extract, useable features.  The located features can also be 

used as subsequent measurements for further detection of higher order features.  

Geometric feature descriptions are often used for 3D point data.  Data sampled from 

man-made objects tend to fit geometric features better while natural terrain and objects 

such as trees are more difficult.  Geometric features commonly fit to point data are line 

segments, circular arcs, elliptical arcs, simple polygons, boxes, cylinders, spheres, and 

cones.   

Geometric features commonly used to model 3D environments include lines, 

circles, ellipses, spheres, cylinders, cones, and planes.  These features can be defined 

either parametrically, shown in Table 1, or implicitly as in Table 2.  Range data in the 

form of 3D points are used to fit an appropriate model of the geometric feature of 

interest.  When a data segment fits a model of the feature well, the data is replaced with a 

parameterized instance of the feature.  The environment, expressed in these features 

instead of raw data, is thereby compressed and often easier to process, render, and store. 
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Curve Equation 

Line 0ax by c    

Circle, center(a,b) and radius r 2 2 2 2 22 2 0x y ax by a b r        

Ellipse (including circles) 2 2

2

0

  4 0

ax bxy cy dx ey f

where b ac

     

 
 

Hyperbola 2 2

2

0

  4 0

ax bxy cy dx ey f

where b ac

     

 
 

Parabola 2 2

2

0

  4 0

ax bxy cy dx ey f

where b ac

     

 
 

General conic section 2 2 0ax bxy cy dx ey f       

Table 1.   Parametric definitions of geometric features.  
(From Forsyth, 2002, p. 340) 
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Curve Parametric Form Parameters 

Circle centered at 
the origin 
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Axis aligned ellipse 
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Ellipse 
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cubic segment 3 2 3 2( , )at bt ct d et ft gt h       ( , , , , , , , )

[0,1]

a b c d e f g h

t

 


 

Table 2.   Implicit definition of geometric features  
(From Forsyth, 2002, p. 337). 

 

1. Computer Vision Methods 

An important problem that the domain of computer vision attempts to solve is the 

extraction of geometric primitive features from an image.  Two common processes used 

for geometric feature extraction are the Random Sampling and Consensus (RANSAC) 

and the Hough transform methods (Bolles, 1981; Duda, 1972).  Both methods can be 

applied to 2D and 3D data sets.  Computer vision techniques also attempt to segment 

images into clusters of similar regions by using edge detection or object recognition 

algorithms in 2D visual images and 3D range images. 

a. RANSAC 

A technique commonly used in computer vision is called Random 

Sampling and Consensus (RANSAC) (Bolles, 1981). The RANSAC method attempts to 

filter out outliers—gross errors in the data set—prior to evaluating the fit of the data to a 
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model.  Least squares methods do not filter out outlier data and are susceptible to the 

level of accuracy of the data set to which they are applied.  The essential steps of the 

RANSAC method are to: 

 Make a hypothesis of the initial model parameters and eliminate 

data points that are outside a set error threshold. 

 Using the remaining inlier data points, compute an improved 

model. 

A model output from the method is considered to be the best fit model when weighted 

with the number of inlier data points used to fit the model and the measure of the 

resulting error of that model fit. 

For RANSAC to be both robust and efficient, the data set must be as small 

as possible and still be able to determine the parameters of the model of interest.  

RANSAC methods work best with a high proportion of inliers, models with few 

parameters, and computationally efficient model fitting methods. 

The background literature holds many examples of geometric primitive 

feature extraction from 3D data using the RANSAC paradigm.  RANSAC methods are 

used by Tarsha-Kurdi (2007) to extract roof planes from airborne laser scanners.  

RANSAC fitting of cylinders to 3D data is shown in past work by Bolles and Fischler 

(Bolles, 1981), Chaperon (2001), and Bolles (1981).  Schanbel (2007) proposed a more 

general method to detect planes, spheres, cylinders, cones, and tori in point-clouds.  

  One method of particular interest in detection of 3D geometric features 

from point data is to use domain knowledge to enhance the RANSAC algorithm.  For 

example, past work in detecting roof planes from airborne LIDAR data uses domain 

knowledge of the mutual relationship of various roof plane combinations.  The enhanced 

RANSAC method is able to improve detection of roof planes among other located planes 

that are not associated with building roofs (Tarsha-Kurdi, 2007).   
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b. Hough Transform 

The Hough transform is used extensively in computer vision applications 

involving the detection of geometric features such as circles and lines from 2D images.  

Past work with Hough transform methods to detect objects in 3D point clouds includes 

Tarsha-Kurdi (2007) to extract roof planes from airborne laser scanners, Van der Glas 

(2002) for detecting the center and radius of spheres in 3D medical scanners, Rabbani 

(2005) to detect cylinders, and Ogundana (2007) for detecting spherical control points for 

calibrating multi-sensor shape measurement systems.  

The Hough transform delineates a discrete parameter space that includes 

all possible parameter variations to accumulate potential features described by the 

available data.  The frequency of an accumulated parameter combination gives the 

probable features located in the data set.  This method requires enough correct data to 

work and a good choice for an accumulation grid because it is susceptible to noisy data.  

The parameter space can easily get large and as a consequence lose processing speed 

performance.  The Hough transform is most frequently limited to application to 2D 

images for this reason, although it has been applied to detection of planes in 3D range 

images since the number of parameters is relatively small (Schanbel, 2007).   

2. Mathematical 3D Feature Fitting 

Several methods exist for fitting 3D points to geometric features that are similar 

to fitting methods for 2D images.  The detection of circular and elliptical cross sections 

by fitting 3D laser scan line data is adversely affected due to partial and incomplete data 

available from the whole cross section.  For the problem of fitting noisy data to a circle, 

there is a large variance in the fit as the arc subtended by the data on the circle 

approaches zero (Rusu, 2003).   

a. Least Mean Squares Methods 

Least Mean Squares methods, such as orthogonal distance regression, 

attempt to minimize the sum of squared distances from each measured data point to the 

nearest point on the hypothesized geometric feature (Atieg, 2004).  A parameterized 
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equation that describes discrete data can also be used, where the minimization of the error 

of the function parameters give the estimated fit.   

Circular arcs are geometrically determined by at least three non-collinear 

points.  If the points are located on a small arc segment, the resulting minimization matrix 

is poorly conditioned or becomes singular, preventing a (good) solution.  For an algebraic 

fitting of conic sections, the implicit form of the conic can be used estimate the residuals 

that are to be minimized. 

The equations to find a two dimensional circle fit include the parameters 

the x-coordinate of the center of the circle.

the y-coordinate of the center of the circle.

 the radius of the circle.

x

y

r





 

The distance function is defined as 

2 2( , ) ( ) ( )i i i id x y x x y y r      

The objective function that is to be minimized to solve for the circle 

parameters is defined as 

 2
2 2( , , ) ( ) ( )i iJ x y r x x y y r      

To find a circle fit to 3D points, a multi step process can be used (Shakarji, 

1998). 

 Compute the least-squares plane for the data. 

 Rotate the data such that the least-squares plane is the x-y plane. 

 Project the rotated data points into the x-y plane. 

 Compute the 2D circle fit in the x-y plane. 

 Rotate back to the original orientation. 

 Perform a full 3D minimization search over all the parameters. 
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b. Taubin Method 

The Taubin method for estimating planar curves in 2D or surfaces in 3D 

assumes that the generalized eigenvector provides a good initial estimate for iteratively 

minimizing the mean square distance of the data to the estimated feature (Taubin, 1991).  

Although this is a means of computing the estimate with a least squares approach, the 

iterative method is desirable for its ease of implementation in software.  As with least 

squares methods, the accuracy is dependent on the amount of noise in the data and the arc 

length subtended by the data.  Data that subtends a larger arc length return better fitting 

results (Rusu, 2003).  An example MATLAB® implementation for this method is 

available that fits circles and ellipses to 2D data points (MATLAB® Central, 2009). 

c Line Extraction Methods 

Line extraction algorithms from point data include split and merge, 

iterative end point fit, line regression, RANSAC, and Hough Transform.  Nguyen (2007) 

provides general descriptions of some common methods that as applied to indoor mobile 

robotics.   

3. 3D Point Labeling and Classification 

LIDAR-generated point data contains little meaningful information for most 

application purposes.  Higher-level information about the points or groups of points is 

often needed.  Past work in segmenting 3D LIDAR data into classes uses the descriptions 

of scatter points, linear points, and surface points.  Lalonde (2006) developed a point 

cloud classification scheme for use in outdoor robotic navigation.  The scatter 

classification represents porous volumes such as tree canopies and ground vegetation.  

The linear classification identifies long linear features such as wires and tree branches.  

The surface classification includes solid objects.  Another 3D feature labeling method 

attempts to label each individual point or group of points as being a part of the ground 

surface. based on the absence of other data points in the vicinity under the point being 

labeled (Vandapel, 2003). 
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D. FIDUCIAL MARKERS 

A fiducial marker is an object or marking in the environment that appears in 

sensor data that can be used as a control point from which subsequent measurements or 

comparisons of other environmental features in the sensor data can be made.  Data 

captured from the same environment or scene can be correlated and registered using a 

common fiducial marker detected in both sets of data.   

1. Applications of Fiducial Markers 

Applications such as medical imaging or airborne geological surveillance 

combine data from multiple sensors using fiducial markers.  Augmented reality and 

virtual reality applications employ fiducial markers either to correctly align virtual 

objects with the real environment or to measure the location of real objects to correctly 

position them in a virtual environment.   

Examples of 2D fiducial markers include high contrast colored concentric circles, 

matrix pattern markers, and lines.  Circular geodetic markers are used for verification of 

LIDAR systems by Hanna (2005) and 2D matrix markers are used by Cawood (2007) to 

overlay 3D computer graphics over live video images.  The drawbacks of using 2D 

markers for LIDAR pose estimation include the ambiguity of co-planar surfaces in range 

data and the requirement to be placed in known locations prior to system operation. 

Three dimensional objects used for range image registration and pose estimation 

include cylinders, spheres, and orthogonal planes.  Steinbis (2008) positions 3D 

geometric cones on a flight line to register an outdoor augmented reality system and Zhao 

(1996) embeds spherical marker pins on a patient to register a teleoperated surgical 

device.  Vertical cylinders are used for pose estimation of an autonomous wheelchair by 

Gao (2008).  In this system, a LIDAR is used to detect the relative orientation of parallel 

cylinders on the wheelchair to dock the wheelchair for vehicle loading.  Spherical 

markers provide ground truth data for a performance comparison of LIDAR sensors and 

for registering patient body movements during teleoperated medical procedures.  These 

methods all require a priori 3D information about the environment.   
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2. Registration with Fiducial Markers 

Registration is the process to determine the transformations needed to align two 

sets of data in a common global coordinate system (ASTM Standard E2544-09b). 

Registration aligns the virtual frame of reference with another frame of reference.    

Sources of registration error include system noise, environment model measurement, and 

temporal latency between data acquisition systems.  In an unknown environment, model 

acquisition is a large source of registration error.  

A local deviation is one that occurs at a particular region of registered data.  A 

measurement of global registration errors is based on the normalized root mean squared 

error,  
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The set of differences from the measured value and the reference value are aggregated 

with a representation of the amount of variance present using the same units as the 

individual measurements.  Fiducial Registration Error is the error of fitting the data to a 

discrete target feature or data points from one frame to another frame (Cheok, 2005).   

Registration of 3D point cloud data with image data from a 2D camera is 

sometimes completed by matching corresponding features in the two sets of data.  The 

scene is often controlled, as in a factory or laboratory, to provide known features that are 

easily detected by both sensors to allow an accurate computation of the translation and 

rotation components of the registration transformation.  Haas (2005) describes a wall-

based registration method using three orthogonal planes to register the two data sets from 

one high and one low resolution LIDAR system.  The plane parameters of two orthogonal 

walls and the ground are extracted to provide the registration transformation between the 

two sensors.  Another transformation is computed to register the sum of the 3D LIDAR 

data with 2D image data from a video camera.   

Registration techniques for augmented reality systems utilize 2D markers, 3D 

markers or no markers.  Two dimensional fiducial markers include high contrast and 
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matrix markers.  Three dimensional fiducial markers include cylinders used for 

automated wheelchair docking and spherical tipped pins used for medical surgery.  Cones 

have been used for registration of the video of a handheld AR device with objects on a 

flight line (Steinbis, 2008). 

E. APPLICATIONS OF 3D POINT CLOUDS 

Several domains contain applications of 3D point clouds.  Reverse engineering 

makes use of 3D imaging to gain detailed measurements of objects and terrain.  

Computer graphics applications use point sets in the form of indexed vertex arrays of 

objects with surfaces constructed from meshes  These meshes apply additional vertex 

property values to determine surface color, reflectivity, emissivity, and transparency. 

Robotics applications of point clouds include sensing, manipulation, navigation, 

and mapping.  Robot mounted LIDAR systems provide 2D planar or 3D point 

information about the environment that is an input to navigation and obstacle detection 

methods.  This same data can also be applied to mapping functions.  Lalonde (2008) 

describes past work involving robotic mounted LIDAR systems.  

Augmented Reality (AR) systems rely on accurate registration of virtual 

information with the physical world to produce a form of mixed reality in which 

information from a virtual world is used to augment a user’s interaction with the real 

world.  Registration techniques for augmented reality systems utilize 2D markers, 3D 

markers or no markers to derive relative pose estimates between the virtual and real 

environments.   

There are two potential uses of LIDAR range data in an AR system:  as a data 

source for registration and an online environmental modeling tool.  Past work to register 

AR systems processes the video input to search for fiducial marker positions and make an 

estimate of the position and orientation of the video camera.(Steinbis, 2008).  This 

method has the drawback that it requires prior knowledge of the 3D location of the 

fiducial points being tracked.  The advantage of finding tracking features in LIDAR range 

 

 



 28

data for registration is that the required 3D model of the local environment is also 

obtained by the LIDAR allowing operation in an unknown environment (Neumann, 

2003). 

F. RESEARCH FOCUS 

This research investigates a method to determine the pose of a LIDAR sensor 

through the detection of fiducial geometric features in the range data.  These features 

identify the location of fiducial markers placed in the environment.  Types and sizes of 

fiducial markers are evaluated for effectiveness based on sensitivity and accuracy.  

Detection and pose estimation ideally are conducted in real-time data, but the 

experimentation in the current research is not constrained to the use of real-time data.  

Efficient techniques that use LIDAR range data for position and orientation 

determination of environmental features and real time environment map building would 

improve registration of LIDAR data with other imaging sensor data of the same 

environment. 
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III. METHODOLOGY 

A. METHOD OF FIDUCIAL MARKER DETECTION 

This chapter describes a method for three dimensional (3D) geometric feature 

extraction to detect fiducial marker location and orientation in LIDAR range data.  

Various 3D geometries are evaluated for suitability as fiducial markers that permit an 

estimate of the pose of the LIDAR sensor.  The method attempts to detect geometric 

features within the individual laser scan line data.  The sets of detected geometric features 

provide measurements for estimates of the location and pose of a specific 3D geometric 

fiducial marker.  For cylindrical and cone fiducial marker shapes, the method compares 

sets of primitive arc features for fit to an a priori geometric model.  Experimental test 

data captured with a Velodyne HDL-64E S2 LIDAR system are used to evaluate the 

accuracy of the method to detect cylinder and cone fiducial markers and the precision of 

the resulting fiducial pose estimates.  

1. Design Overview 

The approach for the design of the fiducial marker detector in this research 

follows a bottom up approach used by many pattern recognition systems (Duda, 2000, p. 

10).  This method follows a similar approach used to segment range data for mobile 

robotics (Premebida, 2005).  Shown in Table 3, the processing steps start with the 

acquisition of 3D sample points of the relative position of the surfaces in the environment 

with a LIDAR sensor.  The data output in the form of range data is pre-processed to 

remove any invalid or missing measurements.  The segmentation step identifies and 

separates homogenous groups of points within intervals of range and gradient continuity 

for each laser scan line.  Features extracted from the segmented sets of point data are 

used to provide a higher level description of each segment in order to classify the object 

surfaces that the point segments represent.  The set of located feature properties is 

searched to locate clusters of features that fit the known fiducial marker geometry 

dimensions.  The relative position and orientation of the fiducial marker from the LIDAR 
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system are then estimated.  If the fiducial marker pose in the environment is known, an 

estimate can then be made of the pose of the LIDAR within the same environment. 

 

Processing Step Action, Measurement Output, Features 

Sensor Output  
(3D Imaging System) 

Range to environment surfaces Range (Time Units) 

UDP Network Transfer blocks of laser firing data UDP Packets 
LidarInput (Software)   

Pre-Processing Read UDP packets, convert range 
readings into Cartesian points 

Cartesian Points (x, y, z, range, laser 
number) 

Segmentation Set point gradient properties and 
group sets of points from same laser 
scan line based on intervals of 
continuity 

Segments (sets of points from same 
laser scan line) 

Feature Extraction   
Arcs: circles Fit segments to circular arcs. CircularArc [center (x,y,z), radius, 

normal(x,y,z), RMS error] 
Ground points Estimate ground points with constant 

range in segment 
Label points as constant range. 

Wall points Estimate points on objects that are not 
on the ground 

Label points as constant gradient. 

Axis lines Fit arc centers to line, check fit for an 
axis line hypothesis 

Line [ point on line(x,y,z), axis 
direction(x,y,z)] 

Feature Clustering   
Cylinders Check cylinder fit of points in a set of 

arcs with centers that fit an axis line. 
Cylinder [base center(x,y,z), radius, 
height, axis direction(x,y,z), RMS 
error] 

Cones Check cone fit of points in a set of 
arcs with centers that fit an axis line.  
Determine the apex angle with ratio of 
height to base radius. 

Cone [base center(x,y,z), base 
radius, height, axis direction(x,y,z), 
RMS error] 

Fiducial Detection Based on fiducial marker definition, 
determine fiducial marker location and 
orientations. 

Set of cylinder or cone features that 
match fiducial marker.  Relative 
pose is location and orientation 
estimate of the fiducial features. 

LIDAR Pose Estimate  Using known fiducial marker pose in 
environment, estimate LIDAR pose 
with difference from relative pose of 
detected fiducial marker. 

 

Table 3.   Fiducial detection and pose estimation method. 
 

2. 3D Imaging Sensor 

The 3D imaging sensor used for this thesis is a pulsed LIDAR design (HDL-64E 

S2 User's Manual) which employs a head that rotates around the vertical axis with 64 

lasers mounted at fixed vertical offset angles.  The resulting scan pattern swept out by 



 31

each laser is a cone that intersects surfaces in the environment.  As a consequence, much 

of the laser scan line patterns across flat surfaces are not straight lines, but rather arcs, or 

conics.  Line segment fitting is a common method for detecting structured objects in the 

planar scan pattern of 2D LIDAR systems, for example, on indoor autonomous robotic 

systems.  However, due to the conical nature of the VLS laser scan line pattern, there are 

fewer straight line segments in the data, even along flat and linear object surfaces.  Scan 

lines that intersect a long flat wall tend to have a curved shape that matches the curve of 

intersection between the wall plane and the cone of the laser scan. 

3. Sensor Network Communication 

Output from the sensor is via a User Datagram Protocol (UDP) network 

accessible with a category-5 network cable.  The UDP network protocol sends datagram 

messages with no guarantee of packet delivery or packet transmission sequence.  Packets 

of laser range data are formatted inside the sensor and sent over the network in the order 

that they are created.  Packets are processed at the receiving end in the sequence that they 

arrive, yet older, out-of-order packets are dropped.  The advantages of using a UDP 

network communication protocol are the speed of communication and the ability to 

multicast packets simultaneously over the network to several receivers.   

4. Sensor Data Processing Input 

Data output from the VLS is formatted such that range data is packed in the 

sequence of acquisition and not according to any sort of spatial arrangement.  This means 

that although two data points are acquired at nearly the same time, differences in laser 

angle and sensor rotation at the time of firing preclude a simple spatial association 

between the data.  Over a series of sequential data packets, neighbor range points from 

the same laser can easily be accessed.  Identifying which range points are vertically near 

each other is more difficult as they stem from different lasers whose beams cross.  For 

this reason, much of the range data processing operates on sequential points within the 

individual laser scan lines.  These laser scan lines are from a single laser at fixed vertical 

and horizontal offset angles relative to the VLS rotation angle.  The VLS system rotates 
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clockwise (CW) with rotation rates variable from 300 revolutions per minute (RPM)  up 

to 900 RPM.  This is equivalent to a range of five cycles per second (5 Hz) up to 15 Hz.   

a. Error Model 

For this research, the assumed error model for the laser range data follows 

a Gaussian distribution with a zero mean and a variance of 2
r .  This is a commonly used 

error model in laser range finding devices (Wehr, 2005).  The VLS manufacturer 

performs a calibration procedure to derive correction factors for each laser that enable a 

more accurate interpretation of the 3D location of each range return position.  This 

calibration is used to transform the raw range value to a 3D Cartesian point. 

b. Wall Order 

The positions of the 64 lasers in the device do not correspond 

monotonically to the vertical laser direction; i.e., a lower-positioned laser can be directed 

with a fixed angle pointing higher up than a laser mounted above it on the sensor.  Hence, 

laser beams can cross over vertically.  The wall order of the laser firings as defined for 

this research is the sequence of laser hit points as they would occur on a vertical wall at 

least five meters from the laser.  For this thesis, range values less than 5 meters are not 

considered.  Wall order is defined as a numbering sequence from top to bottom [0,63] 

and is solely determined by the vertical angle.  This ordering makes more intuitive sense 

for determining the relative position of neighboring lasers and their resulting data points.  

The VLS manufacturer defines the variable vertCorrection as the vertical angular 

deflection from the horizon, measured in degrees, for each laser.  A positive value 

indicates an offset above the horizon and a negative value below the horizon.  The wall 

order is calculated by ordering the calibration file vertCorrection values from maximum 

to minimum. 

5. Processing Software 

Three software projects provide the ability to generate test point clouds, read and 

record VLS input online, and read and process VLS data offline.  More work is required 

to fully integrate the processing methods into the online system.   
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The OpenSceneGraph (OSG) 3D graphics toolkit is used for rendering and 

visualization of the processing input and output.  The OSG toolkit is written with C++ on 

top of the OpenGL 3D graphics application programming interface (API).  The graphics 

processing nature of OSG allows for direct transformation of geometric primitive features 

detected in the LIDAR point data to a rendered graphical visualization.  

The VLS data processing flow is shown in Figure 6.  Input sources from either a 

live LIDAR network connection or a recorded packet capture file can be processed with 

this software.  Processing and output are controlled by various threshold and mode option 

settings,  The VLS calibration file is read in to memory to provide correction values for 

all of the lasers. 
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Figure 6.   VLS data processing flowchart.   
This flow chart depicts the full system starting with LIDAR data from the sensor or a 

recorded packet capture. 
 

a. Data Structures 

The VLS data packet contains the range and intensity values for six 

sequential firings of each laser.  The rotational position of the sensor is tagged with the 

data packet so that the 3D position of each range value can be determined.  As data 
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packets are read by the processing software, a point buffer is filled that contains point 

objects that include the Cartesian coordinates, range, intensity, and flags for gradient type 

and segment position.   

The concepts of point, firing, packet, and frame organize the data in an 

intuitive way:  Each frame contains all of the points from each laser for one rotation of 

the VLS.  Every processing packet contains the same information as one UDP network 

packet.  A firing corresponds to the sequence of firings from one block of 32 lasers such 

that there are 32 individual data points.  There are two blocks of 32 lasers for a total of 64 

lasers in the system.  A point is the return information from a single firing of a laser. 

The VLS data is read live from the sensor, from a recording of captured 

packets, or from a logfile.  The live input is via a UDP network.  Packet captures are 

recorded from the network in the same format as UDP packets.  The log file contains the 

same point, firing, packet, and frame organization as the UDP packets, but is formatted as 

a delimited text file.  Log files of representative data can also be generated with the 

Python version of the LidarSimulation and a 3D graphical scene in the Delta3D game 

engine. 

The PrimitiveBuffer class contains several buffers to temporarily store 

data from the input and intermediate processing steps.  Member data structures of the 

PrimitiveBuffer class include the PointBuffer, SegmentIndexBuffer, CircleBuffer, 

ConsensusSetIndexBuffer, AxisLineBuffer, CylinderBuffer, and ConeBuffer.  The point 

buffer stores the input of points for an entire frame of data input.  After the segmentation 

step, the segment index buffer stores the point buffer indices of the start of each 

segmented set of scan line points.  The segments are checked for fit to a circular arc and 

the results are contained in the circle buffer.  The consensus set index buffer stores sets of 

circular arcs with centers that fit a hypothesized axis line.  Axis line hypotheses with a 

good enough fit are stored in the AxisLineBuffer.  Finally, the set of data points that 

correspond to arc center points that define the axis lines in the buffer are tested for fit 

with a cylinder or cone.  The cylinder or cone hypotheses with good enough fit to the data 

are added to their respective buffer.  Rendering methods are able to access any of the 



 36

buffers to graphically display the features or other visualizations.  Pose estimates are 

determined from the cylinder or cone objects found in the environment. 

b. Geometric Class Descriptions 

Several geometric primitive classes are defined to contain the dimensions 

and descriptors of features used throughout the detection and estimation process.  Table 4 

describes the primitive classes implemented for this thesis. 

 
Class Members 
Cartesian Point Coordinates  , ,x y z ,  

horizontal gradient,  
continuity type,  
valid flag, 
Laser number 

Segment list of Cartesian Points 
Arc Center  , ,c c cx y z ,    

Radius 
RMS error 

Line Center  , ,c c cx y z ,    

Normalized Axis Direction  , ,a a ax y z  

Segment of points on the line 
Cylinder Center  , ,c c cx y z , 

Normalized Axis Direction  , ,a a ax y z  

Base Radius 
Height 
RMS error 

Cone Center  , ,c c cx y z ,    

Normalized Axis Direction  , ,a a ax y z  

Base Radius 
Height 
RMS error 

Sphere Center  , ,c c cx y z ,    

Radius 
RMS error 

Table 4.   Geometric class definitions. 
The listed geometric features and their associated data members are used for the 

segmentation and feature extraction processes. 
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The point class defines a Cartesian point in 3D.  Values for the laser 

number, range, intensity, gradient type, and segment position are included.  Points are a 

fundamental primitive used throughout the processing chain.  For this reason they are 

stored in a buffer upon reading from the data input source and accessed through pointers. 

The segment class defines a horizontal sequence of points fired from the 

same laser that have a homogenous range or gradient.  Each segment is a set of Cartesian 

points that is defined by an index to the first point in the segment along with the number 

of points in the segment.  This method of indexing reduces the size of the buffer needed 

for segment definition. 

The arc class describes a circular arc.  Each segment is tested for fit to an 

arc within the thresholds set for the processing mode.  The arc class contains the center 

point of the arc, the radius, an estimate of the error of fit, and a reference to the segment 

of points that were used to fit the arc.  Arc objects are stored in an arc buffer used by 

subsequent fitting functions. 

The line class is used to define axis lines for fiducial marker hypotheses.  

Each line object contains a normalized direction vector stored as a Cartesian triple value 

and a Cartesian point on the line.  Axis lines hypotheses are fit using the center points of 

clusters of arc segments and stored in the axis buffer when the fit is determined to be 

good enough. 

The cone and cylinder classes are used to describe geometric features in 

the environment.  These shapes correspond to the fiducial marker geometries tested.  The 

cone and cylinder classes include a center point, axis line direction from the center point, 

base radius, height, and aspect ratio.  The aspect ratio is defined as the height divided by 

the base radius.  This aspect ratio is proportional to the half-angle of the apex of the cone 

and permits comparison of cone apex angles.  Objects of each geometric shape are stored 

in a corresponding buffer to enable referencing for rendering or fiducial marker search 

functions. 
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6. Segmentation 

Segmentation of each scan-line of point data according to a threshold for range 

discontinuity results in a set of Segments.  Each Segment represents an interval of 

continuity and contains points from the same laser scan line in sequential order of firing.  

The end points of the Segment are against a range discontinuity above a threshold.   

Invalid points are defined as points that do not represent a valid range sample.  A 

pulsed LIDAR system includes a minimum time of flight threshold to avoid backscatter 

from environmental obscurants and maximum time interval based on the maximum 

effective range to detect a reflected laser pulse.  An invalid point is marked with zero 

distance, occurring when the laser detector does not receive a reflected laser pulse within 

the time interval required for a maximum range return or receives energy in a time 

interval less than the minimum range threshold.   

Here, the range data is segmented with 1D range discontinuity filters.  The first 

layer of segmentation occurs at a low level, that is, on the raw range measurements from 

the LIDAR.  Initial hypotheses for classification of points into intervals of continuity, 

intervals of constant range, and range discontinuities (large gradient) are made based on a 

series of 1D filters, shown in Table 5.  Points are flagged with the segmentation results to 

be used by higher processing levels. 
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Filter Design Function 

 

 
Continuity type: 

 gradient = 0    constant range (ground) 
 gradient < 0 || gradient > 0  constant gradient 

(walls) 

 

 
segment index buffer values: 

 set new segment flag 
 fill start new segment index values in buffer 

 

 

 
Horizontal gradient flag values: 

 gradient = 0:  zero gradient flag 
 gradient > 0:  positive gradient flag 
 gradient < 0:  negative gradient flag 

Table 5.   Segmentation filters. 
The gradient at ir  is calculated from its adjacent points or from the two preceding points 

with the weighting shown in the top row of the filter design depiction. 
 

The effectiveness of 1D filters for segmentation depends on the choice of 

threshold values.  Larger threshold values discriminate less between surfaces that have 

similar range gradients, while smaller thresholds are affected by noise and rough object 

surfaces.  Segmentation is improved with a threshold level that adapts to the expected 

differences in noise, range, and surface complexity.  The segmentation method for each 

laser scan line is described in Table 6.   Series of sequentially fired points for each laser 

are grouped together in containers called Segments if there is a low enough gradient 

difference between them.  Where there is a large enough range discontinuity, the gradient 

calculation will identify the corresponding points as edges.  The hypothesis is that the 

Segment containing points that exhibit a low gradient difference among them represents 

data points from a common surface.  This Segment is later tested in subsequent steps. 
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Algorithm:  Scan Line Segmentation 
1   begin, initialize:  segment, segmentIndexBuffer 
2              segment  is not open 
3              store last two points in the scan line sequence 
4   for all points in the laser scan line: 
5              gradient  apply 1D filter to the points 
6              point   set gradient flag based on gradient value 
7              if ( segment.notOpen ) :  
8                         segment  add this point  
9                         segment  open the segment 
10            else if ( gradient == 0 && segment.isOpen ) : 
11                       segment   add this point 
12            else if (gradient != 0 && segment.isOpen ) : 
13                      segment add this point 
14                      segment  close the segment.   
15                      segmentIndexBuffer  store segment start index 
16  end 
 

Table 6.   Laser scan line segmentation algorithm.   
All segments start with a closed flag which is changed to open when the first point is 
added.  A segment is flagged as being closed if it is currently flagged open and the 

computed filter gradient is larger than the threshold setting. 
 

Segments of points belonging to the same interval of continuity are passed on to 

feature extraction steps.  Points belonging to intervals of constant range are hypothesized 

to be a member of a ground surface and therefore not a member of an object that is 

potentially the fiducial marker of interest.  These sets of points are culled from those 

passed to feature extraction steps to improve efficiency.  The thresholds used to 

determine segments of constant range and intervals of continuity determine the number 

and size of segments output from the segmentation step. 

7. Feature Extraction 

The feature extraction step uses the sets of points classified as segments to 

produce hypotheses for extracting geometric features such as arcs.  In the case of the 

rotating VLS sensor, each segment of points originates from the scan line of one laser as 
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it rotates through a scene.  The scan line intersection with spheres, cylinders, and cones 

has the shape of an arc segment.  The fiducial detection method starts with estimation of 

arc segments. 

The detection algorithm uses the domain knowledge of the scan line intersection 

parameters to find features of interest in the point data.  The first level of feature 

extraction is to segment the scan line points into intervals of continuity, where there is a 

near constant gradient between segment point ranges, or intervals of constant range, 

where there is a near constant range between segment points.  The arc extraction method 

operates on these segments.  Further feature extraction steps cluster the arc features to 

extract cylinder and cone features by using the parameters of the shape of interest and the 

mutual relationships of neighboring arc features.  

a. 3D Circular Arc Fitting Algorithm 

The following method is implemented to fit a series of 3D point data to a 

circular arc.  This method is similar to the process described in Shakarji (1998).  For short 

arc lengths of laser scan line data, the assumption is that the data lie approximately on the 

same plane.  A least-squares method fits the 2D point data to a circle, and the result is 

transformed back to the original 3D coordinates.  The circle fitting method is an iterative 

method that is based on a least-squares solution that does not require the use of matrix 

mathematics and avoids complex computations (Taubin, 1991).  An example 

MATLAB® implementation for this method is available that fits circles and ellipses. 

8. Feature Clustering and Classification 

The resultant arc features from circle fitting provide the measurements for 

geometric shape detection.  Clustered arc features define a hypothesis for the surface of a 

geometrically shaped object, represented by a set of points.  For the detection of a known 

fiducial marker, the number of geometric hypotheses can be constrained with the marker 

parameters and domain knowledge of the environment.  In this thesis, for the case of data 

that is acquired with a rotating laser, two points or features are close enough to be 

 

 



 42

considered for a hypothesized feature if their center points are within 10 degrees of 

LIDAR rotation from each other.  This limits the number of points and features that are 

tested for fit to a 3D geometric feature. 

A RANSAC approach searches for model fit of feature clusters to the fiducial 

marker model of interest.  The sets of neighbor arc features described above are then 

tested for fit to a cylinder or a cone.  The initial step of determines inliers by comparing 

the radius of the arc feature and the orthogonal distance from the center of the arc to the 

hypothesis axis line.  Figure 7 shows the distance, d , from a 3D point being tested, oX , 

to the hypothesis line with endpoints 1 2,X X .  This distance is calculated as 

   0 1 0 2

2 1

X X X X
d

X X

  



 

The symbol   denotes the vector cross product and the symbol  denotes the Euclidean 

norm of a vector. 

 

 

Figure 7.   Orthogonal distance calculation from a 3D point to a line. 
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Once the set of inliers is determined, the axis line is redefined with the consensus 

set of arc center points and performing an orthogonal distance regression.  To compute 

this, first find the centroid of the point data and then form a matrix A , where each row 

are the point coordinates , ,x y z  shifted by the mean centroid value.  For the line of best fit 

to a set of 3D points, solve for the eigenvector of matrix A  that corresponds to its largest 

eigenvalue using an SVD decomposition of A  where 

A=UWVt  

such that U is an orthogonal matrix, the diagonal values in W are the singular values, and 

Vt is the transpose of the matrix containing the eigenvectors of matrix A which are also 

the principal components of the point data.  The 3D line of best fit includes the centroid 

of the data and the direction vector is the eigenvector described above.  For further 

discussion of the method of 3D line fitting with singular value decomposition see (Golub, 

1996, pp. 70-73). 

With an axis fit from the arc centers in the consensus set, the fiducial marker 

geometry is estimated using the arc feature radii.  This geometric model is then tested for 

goodness of fit by calculating the resulting error of all the points that constitute the axis 

line arc features.  Acceptance of the geometric model is gauged using this error estimate 

and thresholds set to minimize spurious geometric models that fit well to noise.   

To improve the RANSAC method performance for fiducial marker detection, 

knowledge of the fiducial marker size and shape and the laser scan pattern of the VLS 

limit the number of random hypotheses.  Table 7 describes the individual thresholds and 

Table 8 shows the entire algorithm.   
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Threshold Definitions 

max

 initial set of points for an axis hypothesis

= minimum number of arcs required for cone or cylinder hypothesis

= maximum number of iterations

= error tolerance for point fit to geometr

p

arcs

shape

N

N

K

e



max

ic shape hypothesis

 error tolerance for points fit to a circular arc

= max cone height threshold to eliminate tall, thin cones 

           that fit cylinder data points 

 max radius to 

circle

cone

e

h

r





min

contain search for fiducial marker

 min radius to contain search for fiducial marker

 rotation window size for clustering circle arcs

= maximum inlier distance for arc center point to an a
rot

line

r

t

t




_

xis line

 cosine of difference angle between orientation directions

 max difference in aspect ratio, the height/base_radius

 horizontal gradient threshold for co

orientation

aspect

horizontal gradient

t

t

t




 nstant range flag

 gradient threshold for segmentation flagsegmentt   

Table 7.   Threshold definitions.   
These thresholds set the fiducial detection and pose estimation method constraints. 
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Algorithm:  (RANSAC approach for 3D fiducial marker detection) 
1   begin  initialize:   

2.  for all arc feature center points: 

3        determine set of neighbor arcs using rott  

4   for all sets of neighbor arc clusters of size > arcsN : 

5         while  k < maxK  do: 

6                     choose 2 arc centers 

7                     line  calculate a hypothesis axis line 

8                     for all remaining points in the neighbor arc set: 

9                             form a consensus set of circle arcs for an axis line 

10                           if center point distance to axis line < linet  

11                                  then include arc in the consensus set 

12                   if consensus set size > arcsN : 

13                           axis  refit axis line from consensus set arc center points 

14                           for all arcs in consensus set: 

15                                     rms_error  0 

14                                     for all points in the arc:                           

15                                            rms_error  rms_error + point fit error to fiducial model 

16                        if rms_error < best fit consensus set 

17                                      then this set is the new best fit set 

18                          remove consensus set arcs from the set of features for this iteration 

19                 next iteration, k = k + 1 

20  return best fit consensus arc feature set 

21  if fiducial hypothesis base_radius < maxr and  base_radius > minr : 

22            1v


  fiducial hypothesis orientation 

23            2v


  fiducial known orientation 

24            if  1 2 orientationv v t
  : 

25                          h height of fiducial hypothesis 

26                          r radius of fiducial hypothesis 

27                          if cylinder fiducial hypothesis: 

28                                  then valid cylinder fiducial 

29                         else if cone fiducial hypothesis: 

30                                   if  aspect aspect

h
f t

r
  and coneh h : 

31                                             then  fiducial hypothesis is valid cone fiducial marker 

32  end  

Table 8.   RANSAC approach to fiducial marker detection. 
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A region growing method was ruled out due to the reliance on implicit 

connectivity in the data.  The data generated from the VLS LIDAR has a high horizontal 

density and a sparse vertical density.  With only 64 laser scan lines, the vertical 

separation between scan lines increases the potential for error if vertical connectivity 

associations are assumed incorrectly. 

9. Cylinder Similarity Measurement 

A cylinder similarity measurement is used to identify clusters of cylinder 

hypotheses that describe the same cylinder shape.  Each cluster is combined into a single 

cylinder hypothesis. 

Two cylinder hypotheses are considered similar and likely to be from the same 

surface in the environment if the following conditions are true: 

 Radius:  the radii of the two cylinders are similar 

fiducial estimate similarCylinderRadiusr r t   

 Axis orientation:  the axis orientations of the cylinders are near parallel.  If 

1v


and 2v


are the two axis vectors and   is the angle between them, the dot 

product is defined as 

1 2 1 2 cosv v v v 
     

 For parallel vector directions, the dot product equals one.  For orthogonal 

vector directions, the dot product equals zero.  Two cylinder axes are 

determined to be similar if the dot product of their axis vectors is close to 

being equal to 1.0, where 

1 2

1 2

1 axisOrientation

v v
t

v v
 
 
   

 The point distance from the center of each cylinder to the other cylinder’s 

axis line is close enough.  For a 3D line defined by two points 
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1 1 1 1x ( , , )x y z  and 2 2 2 2x ( , , )x y z , the orthogonal distance from any 

point 0 0 0 0x ( , , )x y z  to the line is  

   2 1 1 0

2 1

x x x x

x x
d

  



 

 Two hypothesized cylinder axis lines are close enough to be estimates of 

the same cylindrical shape in the environment if 

centerDistd t  

10. Cone Similarity Measurement 

Cone hypotheses are compared for similarity in much the same way as cylinders 

with the addition of a comparison of the angle of the slope of the sides of the cone.  Cone 

shapes are considered similar if the following are true: 

 Axis orientation is close enough, calculated the same as for cylinder axes. 

 The point distance from the center of each cone to the other cone’s axis 

line is close enough.   

 The ratio of the radius of the base to the height of the cone is close enough 

to the same ratio for the fiducial marker of interest.  This ratio is equal to 

the inverse tangent of the apex angle  , at the top of the cone, where  

arctan
2

base

cone

r

h

   
 

 

11. Fiducial Marker Detection 

A detection of a cylinder or cone fiducial marker is determined by the best fitting 

hypothesis among the set of cylinders or cones found.  For cylinders, the set of cylinder 

fiducial hypotheses is searched for the best fit to the fiducial marker parameters.  A 

distance is calculated based on the absolute difference between the hypothesized root 

mean squared error of fit to the data points and the difference in the radius estimate.  The 
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cylinder hypothesis with the lowest distance is returned as the system-determined fiducial 

marker location and orientation relative to the sensor. 

For this research, the ratio of the height to base radius is called the aspect ratio.  

The set of cone fiducial hypotheses is searched for lowest distance cone hypothesis based 

on the root mean squared error of fit to the data and the difference between the fiducial 

aspect ratio and that of the hypothesis cone.  The best fit cone hypothesis is returned as 

the system-determined fiducial marker location and orientation relative to the sensor. 

12. Processing Method Output 

The objective of this research is to process 3D point data to recognize a known 

fiducial marker in the environment.  The output of the method is the location and 

orientation of detected fiducial markers and the parameters of the model that best fit the 

data.  Since the method extracts several geometric features in the search for the fiducial 

marker, these features are also available for modeling the environment. 

a. Fiducial Marker Pose 

The fiducial marker pose is given by the location of the center point and 

the direction of the central axis.  For a cylinder fiducial marker, the center point is the 

Cartesian coordinate location,  , ,c c cx y z  for half the distance from the base to the top 

along the cylinder axis.  The orientation is given as a normalized direction vector, ˆin , 

with normalized Cartesian components  , ,i i ix y z . 

B. SIMULATION OF LIDAR DATA ACQUISITION 

Synthetic environments have been used in past research into geometric shape 

extraction from 3D point cloud data.  Synthetic point data sets were used to test virtual 

representations of real-world disaster scenes by Biggers (2009) and Bae (2004) tests 

automated point cloud registration techniques.  The advantage to using simulated point 

clouds for testing proposed processing methods are that the point cloud data set size can 

be constrained and derived from simulated environments of know dimensions.  The 

addition of noise to the synthetic data set further represents the real world data.   
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The generated data is not intended to replace experimental data.  The simulation 

provides a sandbox in which to verify and experiment with various point cloud feature 

extraction algorithms.  The data is representative of VLS generated data.  Inside the 

simulation it is possible to control a set of geometric features with known parameters, 

location, and orientation.  The ability to control test scenes of varying complexity for 

variations in object shape, location, and orientation permits the verification of the coding 

of processing algorithms (Baltzakis, 2003).   

1. Simulation Implementation 

The 3D LIDAR simulation created for this research provides a means to verify 

code implementation and experimental setups in a controllable manner.  The process 

displayed in Figure 8 implements a simulated VLS system using Python bindings for the 

Delta3D game engine.  The simulation produces point cloud data sets according to the 

actual VLS laser firing parameters to simulate laser hit points on the surfaces of 

graphically rendered objects within the Delta3D scene.  Depth testing in the virtual world 

replaces the VLS laser firing by calculating the range value for a line of sight intersection 

along the laser firing direction with the scene geometry.   
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Figure 8.   Python/Delta3D point cloud generator.  
This figure depicts the processing flow for simulation of LIDAR point acquisition in a 3D 

graphical environment. 
 

The Delta3D graphical simulation environment offers intersection testing 

functions that calculate ray intersection hit points from a given point to graphics objects 

in the simulated environment.  Object labeling for each hit point is also available.  This 

information allows the testing of correct segmentation and point labeling methods.   

The steps in the process are summarized below. 

 Load laser calibration:  load the correction values for each laser. 

 Load 3D environment:  loads a Delta3D environment using 3D objects 

from .osg or .ive files. 

 Initialize LIDAR position:  initialize the LIDAR position and orientation 

in the world. 
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 Rotate LIDAR, simulate firing:  the LIDAR object steps through rotation 

values while an intersection test is performed using a ray from the laser 

position to the first surface intersected in the graphical world. 

 Record point data:  record the Cartesian coordinates and range for each 

intersection test.  Gaussian noise can be added at this step. 

 Output point data:  point data output to a file. 

 LidarController:  object that controls the position, orientation, and firing of 

the LIDAR object. 

 LIDAR:  object that represents the VLS, includes 64 laser objects. 

 Laser:  object representing a single laser, including the offset and 

correction values relative to the LIDAR origin. 

 Point Buffer:  data structure to contain all point intersection results. 

a. LIDAR Object Implementation 

The LIDAR object includes translation, orientation, and rotation speed 

variables.  The 64 lasers are oriented relative to the LIDAR object position and 

orientation.  The manufacturer’s XML calibration file contains correction values for each 

laser and determines the simulated laser position and firing direction within the LIDAR 

object.  Laser firings are simulated in sequence as the LIDAR object rotates in the 

graphical environment.  Each laser firing range result is calculated through an 

intersection test along the direction of the laser firing.  The first graphical object 

intersected determines the laser hit point and the resulting range value.  A Gaussian 

distributed error is applied to the range value to simulate the error of the LIDAR system 

being modeled.  

b. Three Dimensional Scene Implementation 

A graphical scene implemented in Delta3D defines the simulated 

geometric features for testing.  This graphical scene is loaded into a Delta3D environment 

from files in the .osg or .ive formats.  These files can be created with 3D modeling 
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software, such as Blender or constructed from source code.  Figure 9 shows an example 

scene and the generated point cloud from the scene.   

 

Figure 9.   Delta3D graphical scene and LIDAR simulation point cloud. 
The red shape at the center of the Delta3D scene is the location of the LIDAR sensor.  
The rendered point colors indicate the increase in point elevation using a red to blue 

gradient. 
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c. Point Cloud Output 

The output data formats available from the point cloud generator include a 

format that the Python simulation code can read, a comma separated value text file for 

processing in MATLAB, and a space delimited text file that can be read by the 

LidarSimulation offline processing code.  The potential exists to extend the data output 

for UDP network packet transmission for a direct input to the online VLS data processing 

software.  The current implementation in Python is slower than real-time due to the high 

number of intersection tests that need to be calculated per frame.  For this reason, the 

simulation primarily stores a frame of data that is then accessed by the feature extraction 

code being tested.  

C. OFFLINE VLS DATA PROCESSING 

Implementing the fiducial detection method in an offline processing mode allows 

testing the data structures, fitting functions and overall effectiveness of the method with a 

greater level of control and inspection.  The data structures and functions are the same as 

those in the online LIDAR processing code.  An input log file is created from a live 

LIDAR packet stream, transformed from a recorded LIDAR packet stream, or generated 

with the Python Delta3D LIDAR simulation.  The log file contains the range data 

organized by firing, packet, and frame.  Figure 10 shows a flow chart for the offline VLS 

data processing software. 
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Figure 10.   Offline VLS data processing.   
This flow chart shows the offline processing of the LIDAR data. 

 

The descriptions for each of the steps in Figure 11 are listed below. 

 setPointBuffer:  read point data for one frame to the point buffer. 

 processPointCloud:  process points based on the process option mode and 

threshold settings. 
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 CYLINDER_FIDUCIAL:  mode to find cylinder fiducial. 

 CONE_FIDUCIAL:  mode to find cone fiducial. 

 Segment:  determine intervals of continuity and intervals of constant range 

filling the indices of the start of each segment in the SegmentIndexBuffer 

 fitCircles:  fit circles to the segments, filling CircleBuffer with fit arcs. 

 findAxisLines:  fit axis line hypotheses to the center points of the circle 

features to form consensus sets, use consensus set to fit an axis line 

hypothesis 

 fitCylindersToAxisSet:  fit cylinders to set of axis line hypotheses, fill 

CylinderBuffer 

 fitConesToAxisSet:  fit cones to set of axis line hypotheses, fill 

ConeBuffer 

 clusterCylinders:  combine co-located and similar cylinder hypotheses. 

 clusterCones:  combine co-located and similar cone hypotheses. 

 recordResults:  write results to a file 

 renderResults:  render the point, cylinder, cone buffers for visualization 

D. ONLINE VLS DATA PROCESSING SOFTWARE 

The online version of the VLS data processing software is designed for direct 

processing and classification of 3D point cloud data from the VLS in order to recognize a 

fiducial marker in the environment and estimate its pose.  The same algorithms and data 

structures are used in the offline version of the VLS data processing software to allow 

testing and modification of the algorithms in either environment.  Currently not every 

feature of the offline system is operational in the online version. 
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IV. EXPERIMENT 

A. OVERVIEW 

The following chapter describes an experimental setup to determine the 

performance of the proposed method for accuracy and precision of fiducial detections and 

the precision of the fiducial pose estimation.  The experiment considers a mixed structure 

environment, varying the type of fiducial marker, the range between the LIDAR and 

fiducial marker, and the vertical angle between the LIDAR and the fiducial marker.  The 

mixed structure environment includes several features that provide detection noise and 

false detection opportunities.  The LIDAR height is changed to vary the angle of the 

lasers that scan the fiducial marker.  The LIDAR system pose is not changed during an 

individual data capture event, but the range to the fiducial marker is changed between 

events.  The variation in the LIDAR height and the fiducial range provides an indicator 

for how well the method is able to segment the data and fit fiducial marker features in 

static real world data.  It is expected that similar results would be obtained from a 

dynamic experiment with relative motion between the sensor and fiducial marker. 

B. FIDUCIAL MARKER CONSTRUCTION 

Three test fiducial markers were constructed to collect data for testing the fiducial 

marker detection and pose estimation method:  a cylinder, a cone, and a sphere.  The 

geometric dimensions of these fiducial marker shapes are shown in Table 6. 
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Geometric Shape Dimensions View 

Sphere Radius = 10.25 inches (26 cm) 
Origin:  center point. 

 
 
 
 
 
 

Cylinder Height = 48 inches (121.9 cm) 
Radius = 6.25 inches (15.9 cm) 
Origin: center point of base. 
Orientation of axis = (0,0,1) 

 
 
 
 
 
 
 

Cone Base = 31 inch radius (78.7 cm) 
Origin:  center of base of cone. 
Height = 60 inches (152.4 cm) 
Angle of apex = 56 degrees 
Angle of base = 62 degrees 
Orientation of axis = (0,0,1) 

 
 

 
 
 

 

Table 9.   Fiducial marker dimensions. 
 

The cylinder is a prefabricated concrete construction form made of fiberboard.  

The sphere is an inflatable exercise ball.  The cone is constructed of a plywood frame 

covered with paperboard measured to the dimensions of a half-cone.  Figure 11 depicts 

the fiducial markers as they were used in the experimental test of the processing method. 
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Figure 11.   Photos of fiducial markers.   
These photos depict the three fiducial markers as used in the experimental data collection. 

 

C. EXPERIMENT SETUP 

The experiment captures sample test data for analysis using the Velodyine HDL-

64E S2 LIDAR system.  Fiducial markers of cylindrical, conical, and spherical 

geometries are used as targets in an open sidewalk area between two buildings.  Other 

environment features include square concrete pillars, round garbage cans, trees, bushes, 

and signposts.   

1. Design of Experiment 

The three factors this experiment addresses are the fiducial marker shape, the 

fiducial marker range, and the vertical difference between the LIDAR and the fiducial 

marker.  The experiment layout consists of the LIDAR mounted on a tripod with the 

fiducial markers placed in fixed positions on the ground.  Approximate ground truth data 

is obtained through measurements with a laser level and laser range finder to identify the 

relative location of each fiducial marker from the LIDAR coordinate system origin.  The 

base of each fiducial marker rests on the ground.  Center lines marked on the fiducial 

markers assist alignment in the x and y directions of the horizontal plane.  The locations 

are measured for horizontal distance and an elevation offset from the LIDAR origin.  The 

laser level provides ground point distance and elevation from the LIDAR.  The range is 

varied from five to 30.0 meters.  No orientation measurement is obtained of the fiducial 
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axis offline, but the base of the LIDAR is leveled to align the vertical axis perpendicular 

to the ground.  The LIDAR rotates at five Hz speed to provide a higher sampling rate 

across each laser scan line.  To record test data, the LIDAR UDP packets are captured 

using a laptop computer connected to the LIDAR via an Ethernet cable.  The test data are 

analyzed offline using the packet captures.  Each recorded set of packets allows playback 

at real-time speeds over the same UDP network as the live system.  A summary of 

measurements of the experimental layout is given in Table 10. 

 

Range 
(meters) 

Level 
measurement 
(meters) 

Ground z-axis 
location (meters) 
LIDAR at 1.225 m 

Ground z-axis 
location (meters) 
LIDAR at 2.00 m 

5 0.047 127.2625 2.048 
10 0.083 130.755 2.083 
15 0.108 133.295 2.108 
20 0.092 131.7075 2.092 
25 0.052 127.739 2.052 
30 0.035 125.9925 2.036 

  
LIDAR location measurements. 
 Base Height run 1 = 1.225 m  
 Base Height run 2 = 2.000 m 
 Rotation Speed = 5 Hz = 300 RPM 

 

Table 10.   Experimental layout dimensions. 
 

D. DATA ANALYSIS 

The recorded data consists of a series of 10 to 14 second data captures of the 

fiducial markers in a sidewalk area between two buildings.  There are several tree, 

vehicle, and concrete sidewalk features that present noise and false detection 

opportunities.  Each test data capture is performed with the LIDAR in a measured 

position on the ground relative to the LIDAR sensor.  The following procedure is used to 

evaluate the fiducial marker detection and pose estimation method. 
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 A total of 60 +/- 10 revolutions of the sensor are recorded at a rate of five 

Hz.   

 The detections are classified as true positive, false positive and false 

negative.  A true positive classification is given to fiducial marker 

estimates in positions within one meter of the true position.  A false 

positive detection occurs when there is a fiducial detection outside of the 

one meter threshold.  False negative detections are labeled when there is 

no detection but the fiducial is truly present. 

 A ground truth estimate is calculated from the mean value of five true 

positive classified fiducial marker estimates.  The sample mean, sample 

standard deviation, and standard error are calculated.   

 For the remaining true positive detections, the estimate is adjusted by the 

ground truth sample.  The resulting adjusted mean error is calculated as 

the absolute difference between the estimate value and the ground truth 

value. 

Offline processing and analysis are used on the recorded data to analyze accuracy 

and precision. 

1. Fiducial Marker Detection Accuracy and Precision 

Analysis of fiducial marker detection accuracy measures the instances of true 

positive, false positive, and false negative detections.  A true positive detection occurs 

when the method detects a fiducial marker of the correct dimensions in the correct 

position in the environment where one exists.  A false negative detection happens when 

the method fails to detect a fiducial marker when there is one in the environment.  A false 

positive is when the method detects a fiducial marker in the environment in a location in 

which there is none in the environment. 
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Fiducial marker detection accuracy, precision, and recall are calculated as 

TruePositive TrueNegative
Accuracy

TruePositive TrueNegative FalsePositive FalseNegative




  
 

TruePositive
Precision

TruePositive FalsePositive



 

TruePositive
Recall

TruePositive FalseNegative



 

2. Fiducial Marker Pose Estimation Precision 

The precision of pose estimation is analyzed for those instances of true positive 

detections.  The error of the pose estimation is compared to a sampled ground truth value.  

The LIDAR range data is more precise than common methods for measurement of true 

fiducial marker pose.  For this reason, a sample of true positive detections is used to 

derive a mean pose estimate that is used as a ground truth value.  The system pose 

estimation values are then compared for variation around this mean ground truth value. 

Fiducial pose estimation performance is quantified by the deviation of the fiducial 

marker pose estimated by the system and the ground truth fiducial marker pose.   

Where ix  is a sampled measurement, such as the radius of a detected cylinder, the 

mean of sample values x  over multiple data frames n  is calculated as 

1

1 n

i
i

x x
n 

   

The measurement is compared to a ground truth value to determine the error i  where 

i ix x    

The standard deviation of errors over multiple data frames is defined as 

2

1

1

n

i
is
n
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The standard error of the mean is defined as 

s
SE

n
  

The mean square of estimate errors ix  over multiple data frames is defined as 

2

1

1

n

i
iMSE
n






 

The fiducial marker position estimation error for each frame of data is calculated 

with a root mean square error (RMSE) value, where n  is the number of data points, 

 , ,e e ex y z  are the estimated coordinates, and  , ,g g gx y z  are the ground truth 

coordinates.  The position estimation is evaluated using the Euclidean range estimate in 

the xy-plane and the vertical axis location estimate relative to the LIDAR.  The Euclidean 

range estimate in the xy-plane is 2 2
e e ex y    and the ground truth range is 

2 2
g g gx y   .  The root mean square error for the range estimate is computed where 

 2

1

n

e true
iRMSE

n

 






 

The fiducial marker vertical location is estimated as ez  and the root mean square 

error for the vertical position estimate is 

 2

1

n

e g
i

z

z z
RMSE

n
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V. RESULTS 

A. EXPERIMENTAL RESULTS 

The results of the fiducial detection and estimation method on the experimental 

test data are presented in this chapter.  The objective of the experimental analysis is to 

characterize the laser data for fiducial detection accuracy and precision.  Preliminary test 

runs determine suitable ranges for thresholds.  Initial analysis also reveals that the sphere 

fiducial marker used in the experiment is not large enough to be accurately detected with 

the LIDAR device and methods presented here.  Not enough laser scan lines intersect the 

sphere.  Hence, the results are analyzed for the cylinder and cone fiducial markers. 

Table 11 shows the threshold settings used for the data analysis shown in this 

chapter.  All thresholds are held constant for all test events with one exception.  The 

cylinder fiducial was not detected consistently beyond 20 meters.  This is due to the 

fewer number of intersecting laser scan lines and the fewer number of arcs used to make 

a cylinder hypothesis.  The minimum number of arcs required to form a hypothesis 

cylinder or cone are listed below. 

 At 10 meters a minimum of five arcs 

 At 15 meters a minimum of five arcs 

 At 20 meters a minimum of four arcs 

 At 25 meters a minimum of four arcs 

 At 30 meters a minimum of three arcs  

The lower minimum number of arcs required to form a hypothesis facilitates 

detection of the fiducial markers, but increases the computational complexity of the 

search as there are more combinations of arcs to search for candidate hypotheses.  This 

same threshold is varied in the same way for cone fiducial detection events in order to 

make a direct comparison between cone and cylinder detection with the same threshold 

settings. 
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Threshold Value Description 

pN  2 Initial set of points to define an axis hypothesis 

arcs coneN   3,4, or 5 Minimum number of arcs for cone hypothesis 

arcs cylinderN   3, 4, or 5 Minimum number of arcs for cylinder hypothesis 

cylindere  0.05 m RMSE tolerance for point fit to a cylinder 

conee  0.10 m RMSE tolerance for point fit to a cone 

circlee  0.01 m RMSE tolerance for point fit to an arc 

coneh  3.0 m Maximum cone height threshold to eliminate tall thin cones 

that fit to arcs on a cylinder 

maxr  0.1 m Maximum radius of arcs considered for cylinder or cone fit 

minr  0.5 m Minimum radius of arcs considered for cylinder or cone fit 

rott  5 deg Rotation value to cluster neighbor circle arcs  

linet  0.1 m Maximum distance arc center point to an axis line 

orientationt  0.1 Cosine of difference angle between axis lines 

aspectt  0.3 
Maximum difference in cone aspect ratio, 

height

base
 

_horizontal gradientt  0.005 m Horizontal gradient threshold for constant range flag 

segmentt  0.01 m Gradient threshold for segment divisions 

Table 11.   Experimental threshold settings. 
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Changing the minimum and maximum radius thresholds to a small tolerance 

around the expected fiducial marker radius value eliminates arcs from the list to be 

searched for candidate fiducial hypotheses.  In the case of the cylinder this threshold can 

effectively limit the number of hypotheses searched.  For cone fiducial marker detection 

with this method, a wider range of radii need to be considered in order to locate the arcs 

that are fit to the cone surface. 

1. Segmentation and Feature Fitting 

The results of the segmentation process in Table 12 show the mean count of 

points, segments, arcs, axis lines, cylinders and cones extracted from the range data.  A 

consistent number of points and segments for each event is evident.  The number of 

points includes both valid and invalid range values from the sensor.  The invalid points 

are culled from the point data and only valid range data are considered for further 

processing.  The number of arcs fit is dependent on the threshold setting for root mean 

square error for the fit of data points to a circular arc.  With a greater allowable error a 

larger number of arc features is found.   

The number of arcs, axis lines, and cylinder or cone features fit decreases with the 

range of the fiducial marker.  When the range of the fiducial is increased, there are fewer 

surface data points obtained with a corresponding decrease in the number of arcs and axis 

lines found.  The lower number of arcs and axis lines available decreases the overall fit of 

the data points to the hypothesized fiducial model’s surface.  With fewer arcs found, there 

is a less certain fit of the axis line to construct the fiducial hypothesis model.  Even arc 

hypotheses that correspond to the true fiducial marker stand a smaller chance of 

contributing to the marker detection if they exhibit a high error of fit.  

Other features in the environment may return a false positive detection when their 

feature parameters are within the threshold limits for the fiducial, and have a lower error 

of fit to the data than the true fiducial marker.  Adjusting the threshold settings to more 

closely match the fiducial marker of interest eliminates many of the features not 

associated with the marker.  The drawback is that fewer features are available to 

construct cone or cylinder hypotheses. 
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 Mean Counts Per Frame  

 
Fiducial 

Type 

LIDAR 
height 

(m) 
Range 

(m) pts segs arcs 
axis 
lines cylinders cones clusters

cylinder     1.22 10.0 276,480 49,065 504.0 41.4 35.0 - 6.7 

    15.0 276,480 49,104 519.7 32.9 28.2 - 7.0 

    20.0 276,480 48,921 504.8 38.8 30.3 - 11.0 

    25.0 276,480 49,002 499.8 34.5 25.9 - 10.0 

    30.0 276,480 48,943 514.4 83.0 56.5 - 32.5 

      2.00 10.0 276,480 34,037 729.2 33.3 24.5 - 7.9 

    15.0 276,480 33,781 743.9 31.6 22.9 - 7.3 

    20.0 276,480 33,689 738.0 24.8 15.8 - 7.4 

    25.0 276,480 33,614 726.4 62.7 31.3 - 18.3 

    30.0 276,480 33,789 755.0 196.7 99.5 - 68.0 

cone     1.22 10.0 276,480 49,622 1,483.9 389.0 - 17.3 6.3 

    15.0 276,480 49,040 1,432.9 323.8 - 10.7 4.4 

    20.0 276,480 48,849 1,446.3 595.0 - 11.8 7.8 

    25.0 276,480 48,973 1,592.4 921.2 - 19.1 14.9 

    30.0 276,480 51,451 1,570.2 836.3 - 15.5 12.1 

      2.00 10.0 276,480 33,688 2,053.1 648.7 - 11.4 2.9 

    15.0 276,480 33,204 2,018.1 601.7 - 6.5 3.3 

    20.0 276,480 33,141 2,036.5 1,111.3 - 7.2 5.1 

    25.0 276,480 33,409 2,094.7 11.44.1 - 9.2 6.8 

    30.0 276,480 33,257 2,051.9 1,060.3 - 6.7 5.0 

Table 12.   Segmentation and feature fitting results. 
 

2. Arc Radius Estimation Bias  

The cylinder radius estimation exhibits an error in radius estimation that affects 

the overall detection performance of the method.  This radius estimation bias indicates an 

overestimation of the radius of the arcs on the fiducial cylinder that increases with range.  

The observed approximate range overestimation is shown in Table 13.  Since the fiducial 

marker detection relies on excluding hypotheses with radii not similar to the radius of the 

fiducial, adjusting the fiducial marker radius estimate by these values improves the 

detection of cylinder fiducial markers.  Figure 12 depicts the adjusted mean error of 

cylinder radius estimation when the radius estimate bias is included.   

There is a near constant radius estimate error for the cylinder fiducial marker.  

The precision of the radius estimate is on the order of one to two centimeters.  The VLS 
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system used in the experiment has a reported range error of about 1.5 centimeters 

matching the observed values (HDL-64E S2 Users Manual). 

 

Fiducial Type 

LIDAR 
Height

(m) 
Range 

(m) 

Radius  
bias 
(m) 

Cylinder     1.22  10.0 +0.03

    15.0 +0.03

    20.0 +0.05

    25.0 +0.06

    30.0 +0.06

      2.00  10.0 +0.01

    15.0 +0.02

    20.0 +0.05

    25.0 +0.06

    30.0 +0.07

Table 13.   Cylinder arc radius bias. 
 
 

 
Figure 12.   Radius adjusted mean error – cylinder. 
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The cone base radius estimate is more inaccurate than for the cylinder.  Figure 13 

shows the wide variance in base radius estimation for the cone.  Although this variance is 

greater than for the cylinder, in the case of estimating cone fiducial marker pose the base 

radius estimate is not needed.  The estimate of the location of the apex of the cone is the 

most critical. 

 
Figure 13.   Base radius adjusted mean error – cone.   

The cone base radius estimate is calculated from the hypothesis cone.  A cone with the 
same apex angle as the fiducial marker of interest, but with a different height will result 

in a different base radius. 
 

3. Fiducial Detection Accuracy 

The accuracy and precision for fiducial detection is calculated using the prior 

knowledge of the position of the fiducial in the test environment and the radius estimate 

bias from Table 13.  The fiducial detection accuracy, precision, and recall are given in 

Table 14.  These results indicate a decrease in fiducial detection accuracy and precision 

with range.  Table 15 gives the mean number of arcs, mean number of points, and root 

mean square error for the true positive classifications of each test event.  For each test 

event shown in Table 14, all true positive detections are used to calculate the mean and 

standard deviation of the number of point and arc features.  The results are shown in 

Table 15 along with the average root mean square error of the point fit to the fiducial 

geometry.  With increasing range, there is a decrease in the number of points and arcs 
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available to determine the fiducial marker location.  These decreases correspond to the 

range dependent decrease in the number of laser scan lines intersecting the marker.   

The cone at 25 meters with the LIDAR at 1.22 meters is lower than anticipated.  

Viewing the data shows that there was some sort of object in the environment that 

consistently had a better fit to the data than the true fiducial marker. 

 
 Detection        

Fiducial Type 

LIDAR 
height 

(m) 
 Range 

(m)   TP  FP  FN  Accuracy  Precision   Recall  

Cylinder 1.22 10.0 70 0 0          1.00            1.00       1.00  

   15.0 62 2 0          0.97            0.97       1.00  

   20.0 61 10 0          0.86            0.86       1.00  

   25.0 48 23 0          0.68            0.68       1.00  

   30.0 24 47 0          0.34            0.34       1.00  

  2.00 10.0 70 1 0          0.99            0.99       1.00  

   15.0 63 3 0          0.95            0.95       1.00  

   20.0 56 12 0          0.82            0.82       1.00  

   25.0 28 38 0          0.42            0.42       1.00  

   30.0 16 52 0          0.24            0.24       1.00  

Cone 1.22 10.0 67 4 0          0.94            0.94       1.00  

   15.0 63 7 1          0.89            0.90       0.98  

   20.0 59 10 2          0.83            0.86       0.97  

   25.0 25 29 0          0.46            0.46       1.00  

   30.0 28 28 2          0.48            0.50       0.93  

  2.00 10.0 67 1 1          0.97            0.99       0.99  

   15.0 70 1 0          0.99            0.99       1.00  

   20.0 59 5 0          0.92            0.92       1.00  

   25.0 45 13 4          0.73            0.78       0.92  

    30.0 40 2 22          0.63            0.95       0.65  

Table 14.   Fiducial detection accuracy, precision, and recall. 
This table gives the True Positive (TP), False Positive (FP), and False Negative (FN) 
counts per frame of LIDAR data.  Accuracy, precision, and recall are calculated as 

described in Chapter IV. 
 
 
 
 
 
 
 

 



 72

 

 

 

 

Std Dev Std Dev Std Dev

Fiducial Type 

LIDAR 
height 

(m) 

Range 
(m) 

Mean 
# arcs

Mean 
# pts 

Mean 
RMS 
Error 

# arcs # pts RMS 
Error 

Cylinder 1.22 10.0 7.4 339.0 0.017 2.14 97.17 0.004 

   15.0 6.8 205.5 0.019 1.64 50.90 0.003 

   20.0 4.6 104.1 0.024 0.85 19.00 0.007 

   25.0 4.6 85.7 0.028 0.82 16.26 0.007 

   30.0 3.6 54.3 0.030 0.92 13.89 0.007 

  2.00 10.0 8.2 371.3 0.019 1.89 86.56 0.001 

   15.0 6.6 200.5 0.017 1.41 42.94 0.003 

   20.0 5.4 126.9 0.019 0.59 15.38 0.008 

   25.0 4.2 77.7 0.023 0.39 7.73 0.007 

   30.0 3.1 47.4 0.017 0.34 5.50 0.006 

Cone 1.22 10.0 7.7 536.6 0.047 1.46 144.15 0.014 

   15.0 6.4 342.6 0.035 1.25 69.46 0.009 

   20.0 5.3 228.2 0.031 0.75 30.46 0.004 

   25.0 3.8 122.6 0.036 0.71 27.47 0.013 

   30.0 3.3 89.9 0.039 0.44 11.80 0.013 

  2.00 10.0 8.7 680.6 0.050 1.76 183.91 0.008 

   15.0 6.8 406.9 0.037 0.67 38.79 0.006 

    20.0 4.3 180.3 0.031 0.54 17.27 0.007 

    25.0 4.2 130.3 0.032 0.40 19.10 0.001 

    30.0 4.1 113.0 0.042 0.30 18.28 0.012 

Table 15.   Fiducial root mean square error of fit to data points. 
The mean number of arcs, data points, and root mean square error of fit of the data are 

shown for each true positive fiducial marker detection. 
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Figure 14 gives the detection accuracy of the cylinder and cone with respect to 

fiducial marker range from the LIDAR sensor.  For both the cylinder and the cone, the 

detection accuracy decreases with increasing range from the LIDAR sensor.  Overall the 

cone maintains better detection out to 30 meters.  The less than expected value for the 

cone at 25 meters is approximately the same for the cylinder. 

 

 

Figure 14.   Cylinder vs. cone fiducial detection accuracy. 
 

4. Fiducial Position Estimation Error 

Fiducial position estimation error is evaluated based on the precision of the 

estimate.  This precision is calculated using a subset of the true positive detections for a 

test event; an adjusted mean error and standard deviation are computed for the remaining 

true positive detections for that event.  The range errors are given in Figure 15 and Figure 

16 with the numerical mean results shown in Table 16 and the standard deviations given 

in Table 17.   
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Figure 15.   Adjusted range mean error – cylinder. 
 

 

Figure 16.   Adjusted range mean error – cone. 
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 Adjusted Position Mean Error (m) 
Fiducial 

Type 

LIDAR 
height 

(m) 
Range 

(m) x   y   z  Radius Range 

Cylinder 1.22 10.0 0.002  0.012  0.115  0.004  0.012  

   15.0 0.005  0.014  0.143  0.007  0.014  

   20.0 0.004  0.021  0.087  0.009  0.021  

   25.0 0.004  0.015  0.109  0.012  0.015  

   30.0 0.004  0.019  0.104  0.010  0.019  

  2.00 10.0 0.003  0.013  0.147  0.004  0.013  

   15.0 0.002  0.015  0.117  0.010  0.015  

   20.0 0.003  0.012  0.063  0.011  0.012  

   25.0 0.004  0.009  0.087  0.009  0.009  

   30.0 0.005  0.017  0.229  0.009  0.017  

Cone 1.22 10.0 0.009  0.037  0.029  0.046  0.037  

   15.0 0.007  0.033  0.017  0.061  0.033  

   20.0 0.006  0.015  0.022  0.018  0.015  

   25.0 0.012  0.089  0.033  0.038  0.089  

   30.0 0.008  0.034  0.029  0.021  0.034  

  2.00 10.0 0.005  0.019  0.022  0.043  0.019  

   15.0 0.004  0.015  0.010  0.008  0.015  

    20.0 0.005  0.021  0.026  0.028  0.021  

    25.0 0.005  0.046  0.020  0.061  0.046  

    30.0 0.013  0.044  0.038  0.032  0.044  

Table 16.   Adjusted position mean error. 
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Adjusted Position Standard Deviation Error 
Fiducial 

Type 

LIDAR 
height 

(m) 
Range 

(m)  x   y   z  Radius Range 

Cylinder 1.22 10.0 0.002  0.010  0.113  0.004  0.010  

   15.0 0.004  0.011  0.100  0.005  0.011  

   20.0 0.003  0.022  0.063  0.007  0.022  

   25.0 0.002  0.012  0.088  0.007  0.012  

   30.0 0.003  0.013  0.116  0.007  0.013  

  2.00 10.0 0.003  0.014  0.161  0.002  0.013  

   15.0 0.002  0.012  0.097  0.007  0.012  

   20.0 0.001  0.010  0.046  0.007  0.010  

   25.0 0.003  0.008  0.062  0.007  0.008  

   30.0 0.003  0.011  0.227  0.008  0.011  

Cone 1.22 10.0 0.006  0.018  0.026  0.016  0.018  

   15.0 0.005  0.024  0.015  0.039  0.024  

   20.0 0.006  0.014  0.017  0.020  0.014  

   25.0 0.006  0.030  0.012  0.016  0.030  

   30.0 0.006  0.045  0.017  0.017  0.045  

  2.00 10.0 0.005  0.017  0.016  0.022  0.017  

   15.0 0.005  0.016  0.012  0.016  0.016  

   20.0 0.004  0.018  0.016  0.006  0.018  

    25.0 0.006  0.024  0.022  0.011  0.024  

    30.0 0.006  0.037  0.022  0.018  0.036  

Table 17.   Adjusted position error standard deviation. 

 

The vertical position estimation errors are given in Figure 17 and Figure 18.  

These results show the cylinder maintains a relatively small range estimate error and a 

larger estimate error in the z-axis.  The vertical position error is smaller for the cone, but 

the range error was greater. 
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Figure 17.   Adjusted mean error for Z-axis position estimate – cylinder. 
 

 

Figure 18.   Adjusted mean error for Z-axis position estimate – cone. 
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5. Fiducial Orientation Estimation Error 

The experiment data collected does include a measurement for the fiducial marker 

axis orientation, but the LIDAR sensor vertical axis is aligned perpendicular to the 

ground with a carpenter’s level.  The orientation of each detected fiducial marker is 

compared to the LIDAR axis orientation.  Adjusted orientation values are computed for 

true positive detections using the same method as for the position values.  The orientation 

differences are then transformed into the number of degrees of difference between the 

two axes.  The adjusted mean difference angle between the estimated fiducial orientation 

and the approximate ground truth orientation are shown in Table 18.   

 

Fiducial 
Type 

LIDAR 
height 

(m) 

Range
(m) 

Adjusted Axis Angle Error (deg) 
 

Mean               Std Dev 

Cylinder 1.22 10.0 1.6 1.2 

   15.0 2.5 1.3 

   20.0 3.9 6.2 

   25.0 2.7 1.8 

   30.0 3.2 2.1 

  2.00 10.0 2.4 1.2 

   15.0 1.5 1.0 

   20.0 2.0 1.5 

   25.0 1.3 1.0 

   30.0 3.2 2.2 

Cone 1.22 10.0 2.0 0.8 

   15.0 2.4 1.2 

   20.0 1.2 1.2 

   25.0 6.2 3.1 

   30.0 2.8 2.0 

  2.00 10.0 1.8 1.5 

   15.0 1.3 1.3 

    20.0 2.0 1.7 

    25.0 1.8 1.2 

    30.0 1.3 1.0 

Table 18.   Adjusted axis angle error. 



 79

VI. DISCUSSION 

A. EXPERIMENTAL RESULTS 

The fiducial marker detection and pose estimation software was applied to the test 

data and the resulting fiducial marker pose estimates were investigated.  In general, the 

threshold settings determine the system detection criteria and its ability to make accurate 

fiducial marker pose estimates.  The experiment holds the threshold settings constant for 

all experimental trials except for the number of arcs needed to form an axis line 

hypothesis.  This number was varied with range such that cylinder fiducials were able to 

be detected at greater ranges. 

1. Pose Estimate 

The pose estimation results in Figure 17 and Figure 18 show a larger mean error 

in the z-axis vertical position than for the range.  This is due to the variance in the 

number of laser scan lines that intersect the fiducial marker.  The method calculates the 

height of the fiducial marker based on the upper-most and lower-most scan line positions 

on the shape.  The cylinder vertical position error is larger than for the cone.  The 

advantage of the cone fiducial is a more accurate vertical position estimation.  When only 

a few lasers intersect the fiducial marker, the change in arc radius permits estimation of 

the slope of the cone.  This slope indirectly determines the location of the apex and the 

apex angle.  Locating the apex eliminates a degree of freedom for the cone pose along the 

axis of the cone. 

The pose estimates, in Figure 15 and Figure 16, give good precision with a close 

estimate of the location of a detected fiducial marker.  The percentage of correct 

detections, shown in Table 14, decreases with increased range and the mean pose 

estimate over frames deviates.  At longer ranges, the decreased number of data points 

from the surface of the fiducial marker gives an increasingly worse fit to the fiducial 

cross section.  This effect is show in Table 15.  Incorrect classifications become more 

frequent in environments where other similar geometric shapes are found.  The similar 

geometric surfaces are erroneously attributed to the fiducial marker. 
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In summary, cones have better location determination along their vertical axis due 

to the apex location.  Cones are less susceptible to misidentification with natural or man-

made shapes, resulting in higher percentages of correct detections and a more accurate 

mean position estimate.  Cylinders on the other hand could easily be located in a mixed 

structure environment in the form of telephone poles, signposts, structural pillars, or 

storage tanks.  Cylinders show a better range estimate precision than cones. 

2. Fiducial Marker Geometry 

Initial results showed that the sphere was not large enough to return enough 

surface points for accurate detection.  Therefore, all experiments focused on the cylinder 

and cone shapes. 

The accuracy of the method to detect the cylinder depends on how many laser 

scan lines intersect the cylinder and how well those intersections are segmented as 

continuous intervals.  The cylinder fiducial marker is intersected by LIDAR scan lines 

from 10 to 30 meter ranges.  The mean number of arcs used to compute the fiducial 

marker parameters decreases from 7 arcs at 10 meters to 3 arcs at 30 meters.   

The cone geometry offers the best means for determining both location and 

orientation when only a sample of the surface points is available.  A sample of the surface 

points from a cylinder includes ambiguity as to their location along the cylinder axis.  A 

similar sample from a cone or a sphere offers more information to determine the location 

of the cone apex or sphere center.  The cone parameters define a slanted surface that 

reaches an apex point that is uniquely defined in 3D space.  The sphere includes a center 

point that is unique in 3D.  These characteristics of cones and spheres allow a better 

determination of 3D location than for a cylinder, see Figure 17.  The axis line inherent in 

cylinders and cones provides a means of determining orientation that is not available with 

a sphere.  A sphere has no definable orientation parameter. 

The cone fiducial cover did not hold its shape very well as shown in Figure 11.  

Visual inspection of the point clouds for the 25 meter and 30 meter positions indicate that 
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a continuous interval of data points are segmented along the bottom portions of the cone, 

but no arcs are fit to the data.  This appears to have affected the detection of the lower 

half of the shape in the LIDAR data. 

The constant radius of the cylinder fiducial assists in limiting the number of arcs 

used to derive the cylinder hypotheses.  By using a threshold constraint for the size of 

arcs used to form cylinder hypotheses, the complexity of the search decreases.  The cone 

fiducial has a range of possible cross section radii along its height and requires that the 

circular arc radius threshold be opened enough to fit arcs over this range.  This increases 

the computational complexity for finding cones, creating slower detections for cones than 

cylinders in the same environment.  While the method is able to better estimate the 

position of a cone along its axis, the increased computational complexity may not suit an 

online processing application.  Cylinder fiducial pose estimation is less computationally 

complex, but leads to position estimate inaccuracies along its axis. 

3. Segmentation 

Increasing the segmentation threshold leads to under-segmentation of the data, 

resulting in points from different object surfaces being included in the same line segment.  

For instance, the area of a cylinder near the base is close to the ground and under-

segmentation results in both point data from the ground and the cylinder being sent to 

feature fitting steps.  The increase in outlier data decreases the accuracy of the feature 

fitting methods.  Decreasing the segmentation threshold creates more segments, which 

separates the points on the cylinder from those that are not on the cylinder.  As the 

segmentation threshold is further decreased, over-segmentation of the same scan line on 

the cylinder occurs and multiple segments of the same scan line on the same object are 

detected.  With fewer points in each segment, a shorter arc segment is described by the 

data points and the fit of the corresponding arc geometric feature is worse.  

The arc segments near the base of a cone or cylinder fiducial marker are 

sometimes not detected near the ground.  A small segmentation threshold value is 

required to segment the points on the ground from the points on the fiducial marker.  This 

is especially more true for the cone shape since the transition from the ground to the 
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sloped sides is less abrupt than for a cone.  Lowering the segmentation threshold enough 

segments the points of interest, but also introduces many more segments throughout the 

data and a corresponding increase in computational complexity.  A recommendation is to 

elevate the marker to provide a space between the marker and surrounding surfaces, 

creating a sharp gradient and assisting segmentation. 

4. Radius Bias 

There is an apparent tendency of the method to overestimate the radius of the 

cylinder with the error increasing with range. This is likely due to the sensor obtaining 

fewer points of data across a shorter arc length of the fiducial cross section at longer 

distances.  The shorter arcs of point data tend to be flatter and lead to higher arc radius 

estimates.  Also, the beam divergence of the lasers increases the spot size reflecting off of 

the cylinder surface at longer ranges.  This increase in spot size may lead to errors in 

point data used to find arcs resulting in overestimating the radius. 

The number of circular arcs can be minimized with a very low threshold for 

allowable RMS error that defines a good enough circular arc fit to the segment points.  

This also limits the number of arcs available to make cylinder and cone shape 

hypotheses.  A higher number of circular arcs increase the complexity of searching for 

cylinder and cone geometric shape hypotheses.  One means to limit the search is to 

consider sets of circular arcs for fit of a geometric shape if their center points are within a 

certain range of each other. 

5. Detection Accuracy Changes with Range 

Problems with fiducial marker tracking include occlusion, misidentification, and 

noise in the data.  Occlusion occurs when another object in the environment lies within 

the direct line of sight from the sensor viewpoint to the fiducial marker preventing 

observation of some portion of the marker.  Misidentification is either due to false 

positive or false negative detections of the fiducial marker.  

The results depicted in Figure 14 show that the accuracy of fiducial marker 

detection decreases with range, shown by a falling true positive classification rate.  Some 
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possible reasons for this include fewer scan lines crossing the shape and the increase in 

error of fit with increasing range between the sensor and the fiducial marker.  The 

increase in the arc radius estimate errors introduces more error for the fit of the true 

marker geometry, such that it is not the method’s best choice for a marker hypothesis.  

Several false positive detections are attributed to trees, garbage cans, and telephone poles 

with similar radii as the fiducial marker.   

B. FUTURE WORK 

The true orientation of the fiducial markers was not measured before the 

experiment.  Availability of this information might help determine the pose estimation 

limits with respect to variations in orientation.  

The fiducial detection method may be improved by using an ellipse feature fitting 

step instead of circular arcs.  The intersection of the laser scan lines with the cylinder or 

cone shapes are not true circular arcs.  The intersection is defined as a conic section.  An 

ellipse fitting step might be able to find more cross-sectional arcs at a wider range of 

fiducial marker orientations.  This may permit a more accurate detection of a wider range 

of fiducial marker poses. 

One purpose for using fiducial markers with LIDAR range data is to register the 

range data with other imaging sensor data.  Markers that are identifiable in the image data 

as well as the range data could then be used for registration.  An investigation of markers 

suited to these dual purposes (such as colored cones) is desirable. 

A final interesting idea for future work is to use the cylinder fiducial pose 

estimation method to detect and estimate the relative pose of telephone poles from a 

vehicle driving down a street.  The effectiveness of the estimation method could be 

investigated for precision and accuracy of localizing the vehicle in a dynamic street 

environment, without requiring artificially placed fiducials. 
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VII. CONCLUSIONS 

LIDAR sensors produce precise range data of the surfaces in the sensed 

environment.  The method presented in this thesis provides a means for detecting cylinder 

and cone features within the LIDAR data.  The accuracy of the range data allows the 

method to estimate a precise pose for cylinder or cone shapes employed as fiducial 

markers.  The experiments showed that the accuracy of the method to detect cone fiducial 

markers is better than for cylinder fiducial markers.  The accuracy decreases with 

increasing range for any fiducial shape.  At longer ranges, fewer laser scan lines intersect 

the fiducial marker producing fewer data points for the geometric fitting steps.  

For cylinder fiducial pose estimates, this method maintains a relatively small 

range estimate error with a larger estimate error in the vertical axis location.  The vertical 

axis location estimate error is smaller for the cone, but the range error was greater than 

for the cylinder. 

The geometric parameters of a cylinder or cone fiducial marker provide a means 

to detect the marker within the point data and to estimate the pose of the fiducial marker 

relative to the sensor.   If the pose of the fiducial marker is known within the environment 

coordinates, the pose of the LIDAR sensor in the environment can be derived.  The cone 

fiducial marker provides a more accurate means for pose estimation because the apex 

constrains the position along the cone axis.  Cylinder pose estimation is ambiguous along 

its axis.  Cylinders are less computationally expensive to detect than cones.  With a more 

accurate pose estimate along the axis, fiducial markers shaped as cones offer the most 

potential for data registration, vehicle localization, and applications requiring LIDAR 

pose estimation without the use of a GPS or an IMU.  That said, the method routinely 

achieved a more precise estimate of fiducial marker range for cylinders than for cones. 

For many applications, online processing of the LIDAR data for fiducial detection 

and pose estimation is ideal.  The presented method has the potential to be used with 

online LIDAR data streams, but has not yet been tested. Detecting the cylinder fiducial is 

more efficient than the cone when the radius threshold is near the true fiducial radius.  
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With a close tolerance for radius, there are fewer arcs and axis line hypotheses to test.  

The tradeoff is between gaining a more accurate pose estimate from a cone and using a 

less computationally expensive cylinder estimate. 
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APPENDIX:  VELODYNE HDL-64E S2 LIDAR 

A. SYSTEM DESCRIPTION 

The Velodyne HDL-64E S2 LIDAR System (VLS) is a terrestrial LIDAR system 

designed for use on ground vehicles.  This system was originally designed for 

environment sensing in the DARPA Grand Challenge autonomous vehicle competition 

and was later used by several DARPA Urban Challenge teams as an obstacle detector and 

input to the navigation system.  The VLS has also been used for infrastructure mapping.  

Figure 19 depicts the Velodyne HDL-64E S2 LIDAR head unit.  The two visible glass 

discs are the laser detectors with two bundles of laser emitters on either side. 

 

Figure 19.   Velodyne HDL-64E S2 LIDAR system. 
 

1. Laser Characteristics  

 The HDL-64E provides a 360 degree horizontal FOV and a 26.8 degree vertical 

FOV using 64 pulsed lasers rotating at fixed elevation angles.  Rotation speeds can be 

varied from 300 RPM to 900 RPM.  The lasers are eye safe and operate with a 905 

nanometer wavelength and a five nanosecond pulse.   
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The laser firing sequence is determined by the laser position in two blocks of 32 

lasers.  The order each laser fires inside each block is the same order that the range and 

intensity data is sent in the network packet.  The upper block includes laser numbers [0–

31] and the lower block includes laser numbers [32–63].   

2. LIDAR Coordinate System Origin and Orientation 

The LIDAR coordinate system origin and orientation are used to determine the 

spatial location of laser reflections.  The LIDAR vertical axis is the z-axis, while the 0 

and 180 degree rotational positions are on the x-axis, and the 90 and 270 degree positions 

are along the y-axis.  The origin is located in the center of the base plane of the LIDAR.  

The offset of each laser from this origin position are used to calculate the position of each 

laser range measurement.    

3. Laser Firing Pattern 

The lasers are aimed with individual vertical offset angles for vertical coverage of 

the sensor field of view.  Each laser is fired separately with a horizontal offset angle to 

mitigate cross-talk between laser firings.  The HDL-64E S2 generates a high density of 

points in the horizontal direction of rotation dependent on rotational speed.  A higher 

speed of rotation generates data points more sparsely than a lower rotational speed.  Each 

laser is aimed with a fixed vertical angle, limiting the point density in the vertical 

direction.  The angular resolution is the ability to resolve two objects on adjacent 

sightlines.  Angular resolution is a function of the spatial sampling interval, width of the 

laser beam, and angular measurement (Cheok, 2005). The angular increment is the 

angular distance between range samples in either azimuth or elevation. The vertical 

angular increment is depicted in Figure 20, where  

2(1 tan )D d D        
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Figure 20.   Vertical distance between laser firings  
(From Cheok, 2005). 

 

To determine the 3-D location of a data point received from the LIDAR system, a 

rotational and horizontal correction factor must be applied to the range value in the data 

packet.  Factory calibration information is stored in an XML file.  A horizontal rotation 

correction and vertical rotation correction are given in degrees.  The range value is 

corrected for individual laser variance.  Finally, vertical and horizontal offset values 

represent translation from the LIDAR origin.  Figure 21 depicts the orientation and 

direction of the correction values. 
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Figure 21.   Velodyne LIDAR system laser corrections  
(From HDL-64E S2 User's Manual). 

 

The individual laser scan lines with high rotational density and sparse vertical 

density are visible as concentric arcs along the ground plane of the scene shown in Figure 

22.  The relatively large gaps between the laser scan lines presents a challenge in 

processing the data for cross-laser features.  This is especially true when considering 

detection of geometric features, since the relevant features often require several laser scan 

lines of data to be accurately detected.  With sparse vertical information, a geometric 

shape with a larger vertical dimension is required in order to provide enough laser range 

returns for accurate geometric feature detection. 
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Figure 22.   Velodyne LIDAR system laser scan line pattern. 

 4.   Estimated Performance 

The manufacturer specified angular resolution is 0.09 degrees in azimuth with 

estimated distance accuracy of 1.5 centimeters.  Tables 19 gives approximate point 

density and angular resolution values for varying RPM.  Tables 20 and 21 show 

estimated horizontal and vertical resolution estimates based on the rotation speed of the 

LIDAR. 

 

RPM RPS 
(Hz) 

Points per 
revolution 

(total) 

Points Per 
Revolution 
per laser 

Horizontal 
Angular 

Resolution (deg) 
300 5 266624 4166 0.0864 
600 10 133312 2083 0.1728 
900 15 88896 1389 0.2591 

Table 19.   HDL-64E S2 data sampling resolution estimates. 
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Distance of Vertical Wall 10  

meters 
50  

meters 
100 

meters 
Vertical Distance 
between points on the 
wall 

0.0743 m 0.3716 m 0.7430m 

Table 20.   LIDAR angular resolution.   
This table shows the estimated vertical distance between points on a vertically oriented 

wall at the distance indicated. 
 
 

Distance of Vertical 
Wall 

10  
meters 

50  
meters 

100 
meters 

Horizontal distance 
between points (5 Hz) 

0.0151 m 0.0754 m 0.1508 m 

Horizontal distance 
between points (10 Hz) 

0.0302 m 0.1508 m 0.3016 m 

Horizontal distance 
between points (15 Hz) 

0.0452 m 0.2261 m 0.4522 m 

Table 21.   LIDAR angular resolution.  
This table shows the horizontal distance between points on a vertical wall at the distance 

indicated. 
 

5.  Operation 

The HDL-64E can be mounted at any angle from zero to 90 degrees.  The 

horizontal configuration is generally used for vehicle sensing in 360 degrees and the side 

configuration is used to generate data at higher elevations for environments including 

trees, power lines, and buildings. 

The spin rate ranges from 300 RPM (5 Hz) to 900 RPM (15 Hz) and controls the 

horizontal angular resolution.  The spin rate is controlled via a serial command passed 

over a RS-232 COM port. 

6. System Output 

The system output is transmitted using the UDP network protocol via a standard 

RJ-45 Ethernet cable.  Each UDP Ethernet packet contains a data payload of 1206 bytes 

consisting of 12 firing blocks of 100-byte firing data followed by six bytes of device 

status information.  The 64 lasers are divided into an upper and lower firing block of 32 
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lasers each. One of the 12 firing blocks represents the firing data from either the upper or 

lower block.  Each UDP packet contains six separate firings for each laser that are 

grouped by firing block.  (HDL-64E S2 User's Manual)  Table 22 summarizes the byte 

order of the packet data contents. 

 

Byte Order Data Contents 

2 bytes Header info.  Identify upper/lower block. 

2 bytes Rotational info.  [0-35999] hundredths of a degree. 

3 bytes (x 32) 

Laser return info.  32 sequential laser returns with two bytes of 

range information in 2 mm increments followed by a one byte 

intensity value [0-255].  No laser return within 120 meters 

records a zero range value. 

6 bytes 

Status info.  Two byte incremental spin count [0-65,535] and an 

alternating four byte internal temperature or 4 byte firmware 

version number. 

Table 22.   HDL-64E S2 data packet format  
(After HDL-64E S2 User's Manual). 
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